Line data Source code
1 : !--------------------------------------------------------------------------------------------------!
2 : ! CP2K: A general program to perform molecular dynamics simulations !
3 : ! Copyright 2000-2025 CP2K developers group <https://cp2k.org> !
4 : ! !
5 : ! SPDX-License-Identifier: GPL-2.0-or-later !
6 : !--------------------------------------------------------------------------------------------------!
7 :
8 : ! **************************************************************************************************
9 : !> \brief Does all kind of post scf calculations for GPW/GAPW
10 : !> \par History
11 : !> Started as a copy from the relevant part of qs_scf
12 : !> Start to adapt for k-points [07.2015, JGH]
13 : !> \author Joost VandeVondele (10.2003)
14 : ! **************************************************************************************************
15 : MODULE qs_scf_post_gpw
16 : USE admm_types, ONLY: admm_type
17 : USE admm_utils, ONLY: admm_correct_for_eigenvalues,&
18 : admm_uncorrect_for_eigenvalues
19 : USE ai_onecenter, ONLY: sg_overlap
20 : USE atom_kind_orbitals, ONLY: calculate_atomic_density
21 : USE atomic_kind_types, ONLY: atomic_kind_type,&
22 : get_atomic_kind
23 : USE basis_set_types, ONLY: gto_basis_set_p_type,&
24 : gto_basis_set_type
25 : USE cell_types, ONLY: cell_type
26 : USE cp_array_utils, ONLY: cp_1d_r_p_type
27 : USE cp_blacs_env, ONLY: cp_blacs_env_type
28 : USE cp_control_types, ONLY: dft_control_type
29 : USE cp_dbcsr_api, ONLY: dbcsr_add,&
30 : dbcsr_p_type,&
31 : dbcsr_type
32 : USE cp_dbcsr_operations, ONLY: copy_dbcsr_to_fm,&
33 : dbcsr_deallocate_matrix_set
34 : USE cp_dbcsr_output, ONLY: cp_dbcsr_write_sparse_matrix
35 : USE cp_ddapc_util, ONLY: get_ddapc
36 : USE cp_fm_diag, ONLY: choose_eigv_solver
37 : USE cp_fm_struct, ONLY: cp_fm_struct_create,&
38 : cp_fm_struct_release,&
39 : cp_fm_struct_type
40 : USE cp_fm_types, ONLY: cp_fm_create,&
41 : cp_fm_get_info,&
42 : cp_fm_init_random,&
43 : cp_fm_release,&
44 : cp_fm_to_fm,&
45 : cp_fm_type
46 : USE cp_log_handling, ONLY: cp_get_default_logger,&
47 : cp_logger_get_default_io_unit,&
48 : cp_logger_type,&
49 : cp_to_string
50 : USE cp_output_handling, ONLY: cp_p_file,&
51 : cp_print_key_finished_output,&
52 : cp_print_key_should_output,&
53 : cp_print_key_unit_nr
54 : USE cp_realspace_grid_cube, ONLY: cp_pw_to_cube
55 : USE dct, ONLY: pw_shrink
56 : USE ed_analysis, ONLY: edmf_analysis
57 : USE eeq_method, ONLY: eeq_print
58 : USE et_coupling_types, ONLY: set_et_coupling_type
59 : USE hfx_ri, ONLY: print_ri_hfx
60 : USE hirshfeld_methods, ONLY: comp_hirshfeld_charges,&
61 : comp_hirshfeld_i_charges,&
62 : create_shape_function,&
63 : save_hirshfeld_charges,&
64 : write_hirshfeld_charges
65 : USE hirshfeld_types, ONLY: create_hirshfeld_type,&
66 : hirshfeld_type,&
67 : release_hirshfeld_type,&
68 : set_hirshfeld_info
69 : USE iao_analysis, ONLY: iao_wfn_analysis
70 : USE iao_types, ONLY: iao_env_type,&
71 : iao_read_input
72 : USE input_constants, ONLY: &
73 : do_loc_both, do_loc_homo, do_loc_jacobi, do_loc_lumo, do_loc_mixed, do_loc_none, &
74 : ot_precond_full_all, radius_covalent, radius_user, ref_charge_atomic, ref_charge_mulliken
75 : USE input_section_types, ONLY: section_get_ival,&
76 : section_get_ivals,&
77 : section_get_lval,&
78 : section_get_rval,&
79 : section_vals_get,&
80 : section_vals_get_subs_vals,&
81 : section_vals_type,&
82 : section_vals_val_get
83 : USE kinds, ONLY: default_path_length,&
84 : default_string_length,&
85 : dp
86 : USE kpoint_types, ONLY: kpoint_type
87 : USE mao_wfn_analysis, ONLY: mao_analysis
88 : USE mathconstants, ONLY: pi
89 : USE memory_utilities, ONLY: reallocate
90 : USE message_passing, ONLY: mp_para_env_type
91 : USE minbas_wfn_analysis, ONLY: minbas_analysis
92 : USE molden_utils, ONLY: write_mos_molden
93 : USE molecule_types, ONLY: molecule_type
94 : USE mulliken, ONLY: mulliken_charges
95 : USE orbital_pointers, ONLY: indso
96 : USE particle_list_types, ONLY: particle_list_type
97 : USE particle_types, ONLY: particle_type
98 : USE physcon, ONLY: angstrom,&
99 : evolt
100 : USE population_analyses, ONLY: lowdin_population_analysis,&
101 : mulliken_population_analysis
102 : USE preconditioner_types, ONLY: preconditioner_type
103 : USE ps_implicit_types, ONLY: MIXED_BC,&
104 : MIXED_PERIODIC_BC,&
105 : NEUMANN_BC,&
106 : PERIODIC_BC
107 : USE pw_env_types, ONLY: pw_env_get,&
108 : pw_env_type
109 : USE pw_grids, ONLY: get_pw_grid_info
110 : USE pw_methods, ONLY: pw_axpy,&
111 : pw_copy,&
112 : pw_derive,&
113 : pw_integrate_function,&
114 : pw_scale,&
115 : pw_transfer,&
116 : pw_zero
117 : USE pw_poisson_methods, ONLY: pw_poisson_solve
118 : USE pw_poisson_types, ONLY: pw_poisson_implicit,&
119 : pw_poisson_type
120 : USE pw_pool_types, ONLY: pw_pool_p_type,&
121 : pw_pool_type
122 : USE pw_types, ONLY: pw_c1d_gs_type,&
123 : pw_r3d_rs_type
124 : USE qs_chargemol, ONLY: write_wfx
125 : USE qs_collocate_density, ONLY: calculate_rho_resp_all,&
126 : calculate_wavefunction
127 : USE qs_commutators, ONLY: build_com_hr_matrix
128 : USE qs_core_energies, ONLY: calculate_ptrace
129 : USE qs_dos, ONLY: calculate_dos,&
130 : calculate_dos_kp
131 : USE qs_electric_field_gradient, ONLY: qs_efg_calc
132 : USE qs_elf_methods, ONLY: qs_elf_calc
133 : USE qs_energy_types, ONLY: qs_energy_type
134 : USE qs_energy_window, ONLY: energy_windows
135 : USE qs_environment_types, ONLY: get_qs_env,&
136 : qs_environment_type,&
137 : set_qs_env
138 : USE qs_epr_hyp, ONLY: qs_epr_hyp_calc
139 : USE qs_grid_atom, ONLY: grid_atom_type
140 : USE qs_integral_utils, ONLY: basis_set_list_setup
141 : USE qs_kind_types, ONLY: get_qs_kind,&
142 : qs_kind_type
143 : USE qs_ks_methods, ONLY: calc_rho_tot_gspace,&
144 : qs_ks_update_qs_env
145 : USE qs_ks_types, ONLY: qs_ks_did_change
146 : USE qs_loc_dipole, ONLY: loc_dipole
147 : USE qs_loc_states, ONLY: get_localization_info
148 : USE qs_loc_types, ONLY: qs_loc_env_create,&
149 : qs_loc_env_release,&
150 : qs_loc_env_type
151 : USE qs_loc_utils, ONLY: loc_write_restart,&
152 : qs_loc_control_init,&
153 : qs_loc_env_init,&
154 : qs_loc_init,&
155 : retain_history
156 : USE qs_local_properties, ONLY: qs_local_energy,&
157 : qs_local_stress
158 : USE qs_mo_io, ONLY: write_dm_binary_restart
159 : USE qs_mo_methods, ONLY: calculate_subspace_eigenvalues,&
160 : make_mo_eig
161 : USE qs_mo_occupation, ONLY: set_mo_occupation
162 : USE qs_mo_types, ONLY: get_mo_set,&
163 : mo_set_type
164 : USE qs_moments, ONLY: qs_moment_berry_phase,&
165 : qs_moment_locop
166 : USE qs_neighbor_list_types, ONLY: get_iterator_info,&
167 : get_neighbor_list_set_p,&
168 : neighbor_list_iterate,&
169 : neighbor_list_iterator_create,&
170 : neighbor_list_iterator_p_type,&
171 : neighbor_list_iterator_release,&
172 : neighbor_list_set_p_type
173 : USE qs_ot_eigensolver, ONLY: ot_eigensolver
174 : USE qs_pdos, ONLY: calculate_projected_dos
175 : USE qs_resp, ONLY: resp_fit
176 : USE qs_rho0_types, ONLY: get_rho0_mpole,&
177 : mpole_rho_atom,&
178 : rho0_mpole_type
179 : USE qs_rho_atom_types, ONLY: rho_atom_type
180 : USE qs_rho_methods, ONLY: qs_rho_update_rho
181 : USE qs_rho_types, ONLY: qs_rho_get,&
182 : qs_rho_type
183 : USE qs_scf_csr_write, ONLY: write_hcore_matrix_csr,&
184 : write_ks_matrix_csr,&
185 : write_p_matrix_csr,&
186 : write_s_matrix_csr
187 : USE qs_scf_output, ONLY: qs_scf_write_mos
188 : USE qs_scf_types, ONLY: ot_method_nr,&
189 : qs_scf_env_type
190 : USE qs_scf_wfn_mix, ONLY: wfn_mix
191 : USE qs_subsys_types, ONLY: qs_subsys_get,&
192 : qs_subsys_type
193 : USE qs_wannier90, ONLY: wannier90_interface
194 : USE s_square_methods, ONLY: compute_s_square
195 : USE scf_control_types, ONLY: scf_control_type
196 : USE stm_images, ONLY: th_stm_image
197 : USE transport, ONLY: qs_scf_post_transport
198 : USE trexio_utils, ONLY: write_trexio
199 : USE virial_types, ONLY: virial_type
200 : USE voronoi_interface, ONLY: entry_voronoi_or_bqb
201 : USE xray_diffraction, ONLY: calculate_rhotot_elec_gspace,&
202 : xray_diffraction_spectrum
203 : #include "./base/base_uses.f90"
204 :
205 : IMPLICIT NONE
206 : PRIVATE
207 :
208 : ! Global parameters
209 : CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'qs_scf_post_gpw'
210 : PUBLIC :: scf_post_calculation_gpw, &
211 : qs_scf_post_moments, &
212 : write_mo_dependent_results, &
213 : write_mo_free_results
214 :
215 : PUBLIC :: make_lumo_gpw
216 :
217 : CONTAINS
218 :
219 : ! **************************************************************************************************
220 : !> \brief collects possible post - scf calculations and prints info / computes properties.
221 : !> \param qs_env the qs_env in which the qs_env lives
222 : !> \param wf_type ...
223 : !> \param do_mp2 ...
224 : !> \par History
225 : !> 02.2003 created [fawzi]
226 : !> 10.2004 moved here from qs_scf [Joost VandeVondele]
227 : !> started splitting out different subroutines
228 : !> 10.2015 added header for wave-function correlated methods [Vladimir Rybkin]
229 : !> \author fawzi
230 : !> \note
231 : !> this function changes mo_eigenvectors and mo_eigenvalues, depending on the print keys.
232 : !> In particular, MO_CUBES causes the MOs to be rotated to make them eigenstates of the KS
233 : !> matrix, and mo_eigenvalues is updated accordingly. This can, for unconverged wavefunctions,
234 : !> change afterwards slightly the forces (hence small numerical differences between MD
235 : !> with and without the debug print level). Ideally this should not happen...
236 : ! **************************************************************************************************
237 10053 : SUBROUTINE scf_post_calculation_gpw(qs_env, wf_type, do_mp2)
238 :
239 : TYPE(qs_environment_type), POINTER :: qs_env
240 : CHARACTER(6), OPTIONAL :: wf_type
241 : LOGICAL, OPTIONAL :: do_mp2
242 :
243 : CHARACTER(len=*), PARAMETER :: routineN = 'scf_post_calculation_gpw'
244 :
245 : INTEGER :: handle, homo, ispin, min_lumos, n_rep, &
246 : nchk_nmoloc, nhomo, nlumo, nlumo_stm, &
247 : nlumos, nmo, nspins, output_unit, &
248 : unit_nr
249 10053 : INTEGER, DIMENSION(:, :, :), POINTER :: marked_states
250 : LOGICAL :: check_write, compute_lumos, do_homo, do_kpoints, do_mixed, do_mo_cubes, do_stm, &
251 : do_wannier_cubes, has_homo, has_lumo, loc_explicit, loc_print_explicit, my_do_mp2, &
252 : my_localized_wfn, p_loc, p_loc_homo, p_loc_lumo, p_loc_mixed
253 : REAL(dp) :: e_kin
254 : REAL(KIND=dp) :: gap, homo_lumo(2, 2), total_zeff_corr
255 10053 : REAL(KIND=dp), DIMENSION(:), POINTER :: mo_eigenvalues
256 : TYPE(admm_type), POINTER :: admm_env
257 10053 : TYPE(atomic_kind_type), DIMENSION(:), POINTER :: atomic_kind_set
258 10053 : TYPE(cp_1d_r_p_type), DIMENSION(:), POINTER :: mixed_evals, occupied_evals, &
259 10053 : unoccupied_evals, unoccupied_evals_stm
260 10053 : TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:) :: mixed_orbs, occupied_orbs
261 : TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:), &
262 10053 : TARGET :: homo_localized, lumo_localized, &
263 10053 : mixed_localized
264 10053 : TYPE(cp_fm_type), DIMENSION(:), POINTER :: lumo_ptr, mo_loc_history, &
265 10053 : unoccupied_orbs, unoccupied_orbs_stm
266 : TYPE(cp_fm_type), POINTER :: mo_coeff
267 : TYPE(cp_logger_type), POINTER :: logger
268 10053 : TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: ks_rmpv, matrix_p_mp2, matrix_s, &
269 10053 : mo_derivs
270 10053 : TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER :: kinetic_m, rho_ao
271 : TYPE(dft_control_type), POINTER :: dft_control
272 10053 : TYPE(mo_set_type), DIMENSION(:), POINTER :: mos
273 10053 : TYPE(molecule_type), POINTER :: molecule_set(:)
274 : TYPE(mp_para_env_type), POINTER :: para_env
275 : TYPE(particle_list_type), POINTER :: particles
276 10053 : TYPE(particle_type), DIMENSION(:), POINTER :: particle_set
277 : TYPE(pw_c1d_gs_type) :: wf_g
278 : TYPE(pw_env_type), POINTER :: pw_env
279 10053 : TYPE(pw_pool_p_type), DIMENSION(:), POINTER :: pw_pools
280 : TYPE(pw_pool_type), POINTER :: auxbas_pw_pool
281 : TYPE(pw_r3d_rs_type) :: wf_r
282 10053 : TYPE(qs_kind_type), DIMENSION(:), POINTER :: qs_kind_set
283 : TYPE(qs_loc_env_type), POINTER :: qs_loc_env_homo, qs_loc_env_lumo, &
284 : qs_loc_env_mixed
285 : TYPE(qs_rho_type), POINTER :: rho
286 : TYPE(qs_scf_env_type), POINTER :: scf_env
287 : TYPE(qs_subsys_type), POINTER :: subsys
288 : TYPE(scf_control_type), POINTER :: scf_control
289 : TYPE(section_vals_type), POINTER :: dft_section, input, loc_print_section, &
290 : localize_section, print_key, &
291 : stm_section
292 :
293 10053 : CALL timeset(routineN, handle)
294 :
295 10053 : logger => cp_get_default_logger()
296 10053 : output_unit = cp_logger_get_default_io_unit(logger)
297 :
298 : ! Print out the type of wavefunction to distinguish between SCF and post-SCF
299 10053 : my_do_mp2 = .FALSE.
300 10053 : IF (PRESENT(do_mp2)) my_do_mp2 = do_mp2
301 10053 : IF (PRESENT(wf_type)) THEN
302 322 : IF (output_unit > 0) THEN
303 161 : WRITE (UNIT=output_unit, FMT='(/,(T1,A))') REPEAT("-", 40)
304 161 : WRITE (UNIT=output_unit, FMT='(/,(T3,A,T19,A,T25,A))') "Properties from ", wf_type, " density"
305 161 : WRITE (UNIT=output_unit, FMT='(/,(T1,A))') REPEAT("-", 40)
306 : END IF
307 : END IF
308 :
309 : ! Writes the data that is already available in qs_env
310 10053 : CALL get_qs_env(qs_env, scf_env=scf_env)
311 :
312 10053 : my_localized_wfn = .FALSE.
313 10053 : NULLIFY (admm_env, dft_control, pw_env, auxbas_pw_pool, pw_pools, mos, rho, &
314 10053 : mo_coeff, ks_rmpv, matrix_s, qs_loc_env_homo, qs_loc_env_lumo, scf_control, &
315 10053 : unoccupied_orbs, mo_eigenvalues, unoccupied_evals, &
316 10053 : unoccupied_evals_stm, molecule_set, mo_derivs, &
317 10053 : subsys, particles, input, print_key, kinetic_m, marked_states, &
318 10053 : mixed_evals, qs_loc_env_mixed)
319 10053 : NULLIFY (lumo_ptr, rho_ao)
320 :
321 10053 : has_homo = .FALSE.
322 10053 : has_lumo = .FALSE.
323 10053 : p_loc = .FALSE.
324 10053 : p_loc_homo = .FALSE.
325 10053 : p_loc_lumo = .FALSE.
326 10053 : p_loc_mixed = .FALSE.
327 :
328 10053 : CPASSERT(ASSOCIATED(scf_env))
329 10053 : CPASSERT(ASSOCIATED(qs_env))
330 : ! Here we start with data that needs a postprocessing...
331 : CALL get_qs_env(qs_env, &
332 : dft_control=dft_control, &
333 : molecule_set=molecule_set, &
334 : scf_control=scf_control, &
335 : do_kpoints=do_kpoints, &
336 : input=input, &
337 : subsys=subsys, &
338 : rho=rho, &
339 : pw_env=pw_env, &
340 : particle_set=particle_set, &
341 : atomic_kind_set=atomic_kind_set, &
342 10053 : qs_kind_set=qs_kind_set)
343 10053 : CALL qs_subsys_get(subsys, particles=particles)
344 :
345 10053 : CALL qs_rho_get(rho, rho_ao_kp=rho_ao)
346 :
347 10053 : IF (my_do_mp2) THEN
348 : ! Get the HF+MP2 density
349 322 : CALL get_qs_env(qs_env, matrix_p_mp2=matrix_p_mp2)
350 742 : DO ispin = 1, dft_control%nspins
351 742 : CALL dbcsr_add(rho_ao(ispin, 1)%matrix, matrix_p_mp2(ispin)%matrix, 1.0_dp, 1.0_dp)
352 : END DO
353 322 : CALL qs_rho_update_rho(rho, qs_env=qs_env)
354 322 : CALL qs_ks_did_change(qs_env%ks_env, rho_changed=.TRUE.)
355 : ! In MP2 case update the Hartree potential
356 322 : CALL update_hartree_with_mp2(rho, qs_env)
357 : END IF
358 :
359 10053 : CALL write_available_results(qs_env, scf_env)
360 :
361 : ! **** the kinetic energy
362 10053 : IF (cp_print_key_should_output(logger%iter_info, input, &
363 : "DFT%PRINT%KINETIC_ENERGY") /= 0) THEN
364 80 : CALL get_qs_env(qs_env, kinetic_kp=kinetic_m)
365 80 : CPASSERT(ASSOCIATED(kinetic_m))
366 80 : CPASSERT(ASSOCIATED(kinetic_m(1, 1)%matrix))
367 80 : CALL calculate_ptrace(kinetic_m, rho_ao, e_kin, dft_control%nspins)
368 : unit_nr = cp_print_key_unit_nr(logger, input, "DFT%PRINT%KINETIC_ENERGY", &
369 80 : extension=".Log")
370 80 : IF (unit_nr > 0) THEN
371 40 : WRITE (unit_nr, '(T3,A,T55,F25.14)') "Electronic kinetic energy:", e_kin
372 : END IF
373 : CALL cp_print_key_finished_output(unit_nr, logger, input, &
374 80 : "DFT%PRINT%KINETIC_ENERGY")
375 : END IF
376 :
377 : ! Atomic Charges that require further computation
378 10053 : CALL qs_scf_post_charges(input, logger, qs_env)
379 :
380 : ! Moments of charge distribution
381 10053 : CALL qs_scf_post_moments(input, logger, qs_env, output_unit)
382 :
383 : ! Determine if we need to computer properties using the localized centers
384 10053 : dft_section => section_vals_get_subs_vals(input, "DFT")
385 10053 : localize_section => section_vals_get_subs_vals(dft_section, "LOCALIZE")
386 10053 : loc_print_section => section_vals_get_subs_vals(localize_section, "PRINT")
387 10053 : CALL section_vals_get(localize_section, explicit=loc_explicit)
388 10053 : CALL section_vals_get(loc_print_section, explicit=loc_print_explicit)
389 :
390 : ! Print_keys controlled by localization
391 10053 : IF (loc_print_explicit) THEN
392 96 : print_key => section_vals_get_subs_vals(loc_print_section, "MOLECULAR_DIPOLES")
393 96 : p_loc = BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)
394 96 : print_key => section_vals_get_subs_vals(loc_print_section, "TOTAL_DIPOLE")
395 96 : p_loc = p_loc .OR. BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)
396 96 : print_key => section_vals_get_subs_vals(loc_print_section, "WANNIER_CENTERS")
397 96 : p_loc = p_loc .OR. BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)
398 96 : print_key => section_vals_get_subs_vals(loc_print_section, "WANNIER_SPREADS")
399 96 : p_loc = p_loc .OR. BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)
400 96 : print_key => section_vals_get_subs_vals(loc_print_section, "WANNIER_CUBES")
401 96 : p_loc = p_loc .OR. BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)
402 96 : print_key => section_vals_get_subs_vals(loc_print_section, "MOLECULAR_STATES")
403 96 : p_loc = p_loc .OR. BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)
404 96 : print_key => section_vals_get_subs_vals(loc_print_section, "MOLECULAR_MOMENTS")
405 96 : p_loc = p_loc .OR. BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)
406 96 : print_key => section_vals_get_subs_vals(loc_print_section, "WANNIER_STATES")
407 96 : p_loc = p_loc .OR. BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)
408 : ELSE
409 : p_loc = .FALSE.
410 : END IF
411 10053 : IF (loc_explicit) THEN
412 : p_loc_homo = (section_get_ival(localize_section, "STATES") == do_loc_homo .OR. &
413 96 : section_get_ival(localize_section, "STATES") == do_loc_both) .AND. p_loc
414 : p_loc_lumo = (section_get_ival(localize_section, "STATES") == do_loc_lumo .OR. &
415 96 : section_get_ival(localize_section, "STATES") == do_loc_both) .AND. p_loc
416 96 : p_loc_mixed = (section_get_ival(localize_section, "STATES") == do_loc_mixed) .AND. p_loc
417 96 : CALL section_vals_val_get(localize_section, "LIST_UNOCCUPIED", n_rep_val=n_rep)
418 : ELSE
419 9957 : p_loc_homo = .FALSE.
420 9957 : p_loc_lumo = .FALSE.
421 9957 : p_loc_mixed = .FALSE.
422 9957 : n_rep = 0
423 : END IF
424 :
425 10053 : IF (n_rep == 0 .AND. p_loc_lumo) THEN
426 : CALL cp_abort(__LOCATION__, "No LIST_UNOCCUPIED was specified, "// &
427 0 : "therefore localization of unoccupied states will be skipped!")
428 0 : p_loc_lumo = .FALSE.
429 : END IF
430 :
431 : ! Control for STM
432 10053 : stm_section => section_vals_get_subs_vals(input, "DFT%PRINT%STM")
433 10053 : CALL section_vals_get(stm_section, explicit=do_stm)
434 10053 : nlumo_stm = 0
435 10053 : IF (do_stm) nlumo_stm = section_get_ival(stm_section, "NLUMO")
436 :
437 : ! check for CUBES (MOs and WANNIERS)
438 : do_mo_cubes = BTEST(cp_print_key_should_output(logger%iter_info, dft_section, "PRINT%MO_CUBES") &
439 10053 : , cp_p_file)
440 10053 : IF (loc_print_explicit) THEN
441 : do_wannier_cubes = BTEST(cp_print_key_should_output(logger%iter_info, loc_print_section, &
442 96 : "WANNIER_CUBES"), cp_p_file)
443 : ELSE
444 : do_wannier_cubes = .FALSE.
445 : END IF
446 10053 : nlumo = section_get_ival(dft_section, "PRINT%MO_CUBES%NLUMO")
447 10053 : nhomo = section_get_ival(dft_section, "PRINT%MO_CUBES%NHOMO")
448 :
449 : ! Setup the grids needed to compute a wavefunction given a vector..
450 10053 : IF (((do_mo_cubes .OR. do_wannier_cubes) .AND. (nlumo /= 0 .OR. nhomo /= 0)) .OR. p_loc) THEN
451 : CALL pw_env_get(pw_env, auxbas_pw_pool=auxbas_pw_pool, &
452 210 : pw_pools=pw_pools)
453 210 : CALL auxbas_pw_pool%create_pw(wf_r)
454 210 : CALL auxbas_pw_pool%create_pw(wf_g)
455 : END IF
456 :
457 10053 : IF (dft_control%restricted) THEN
458 : !For ROKS usefull only first term
459 74 : nspins = 1
460 : ELSE
461 9979 : nspins = dft_control%nspins
462 : END IF
463 : !Some info about ROKS
464 10053 : IF (dft_control%restricted .AND. (do_mo_cubes .OR. p_loc_homo)) THEN
465 0 : CALL cp_abort(__LOCATION__, "Unclear how we define MOs / localization in the restricted case ... ")
466 : ! It is possible to obtain Wannier centers for ROKS without rotations for SINGLE OCCUPIED ORBITALS
467 : END IF
468 : ! Makes the MOs eigenstates, computes eigenvalues, write cubes
469 10053 : IF (do_kpoints) THEN
470 220 : CPWARN_IF(do_mo_cubes, "Print MO cubes not implemented for k-point calculations")
471 : ELSE
472 : CALL get_qs_env(qs_env, &
473 : mos=mos, &
474 9833 : matrix_ks=ks_rmpv)
475 9833 : IF ((do_mo_cubes .AND. nhomo /= 0) .OR. do_stm) THEN
476 134 : CALL get_qs_env(qs_env, mo_derivs=mo_derivs)
477 134 : IF (dft_control%do_admm) THEN
478 0 : CALL get_qs_env(qs_env, admm_env=admm_env)
479 0 : CALL make_mo_eig(mos, nspins, ks_rmpv, scf_control, mo_derivs, admm_env=admm_env)
480 : ELSE
481 134 : IF (dft_control%hairy_probes) THEN
482 0 : scf_control%smear%do_smear = .FALSE.
483 : CALL make_mo_eig(mos, dft_control%nspins, ks_rmpv, scf_control, mo_derivs, &
484 : hairy_probes=dft_control%hairy_probes, &
485 0 : probe=dft_control%probe)
486 : ELSE
487 134 : CALL make_mo_eig(mos, dft_control%nspins, ks_rmpv, scf_control, mo_derivs)
488 : END IF
489 : END IF
490 288 : DO ispin = 1, dft_control%nspins
491 154 : CALL get_mo_set(mo_set=mos(ispin), eigenvalues=mo_eigenvalues, homo=homo)
492 288 : homo_lumo(ispin, 1) = mo_eigenvalues(homo)
493 : END DO
494 : has_homo = .TRUE.
495 : END IF
496 9833 : IF (do_mo_cubes .AND. nhomo /= 0) THEN
497 274 : DO ispin = 1, nspins
498 : ! Prints the cube files of OCCUPIED ORBITALS
499 : CALL get_mo_set(mo_set=mos(ispin), mo_coeff=mo_coeff, &
500 146 : eigenvalues=mo_eigenvalues, homo=homo, nmo=nmo)
501 : CALL qs_scf_post_occ_cubes(input, dft_section, dft_control, logger, qs_env, &
502 274 : mo_coeff, wf_g, wf_r, particles, homo, ispin)
503 : END DO
504 : END IF
505 : END IF
506 :
507 : ! Initialize the localization environment, needed e.g. for wannier functions and molecular states
508 : ! Gets localization info for the occupied orbs
509 : ! - Possibly gets wannier functions
510 : ! - Possibly gets molecular states
511 10053 : IF (p_loc_homo) THEN
512 90 : IF (do_kpoints) THEN
513 0 : CPWARN("Localization not implemented for k-point calculations!")
514 : ELSEIF (dft_control%restricted &
515 : .AND. (section_get_ival(localize_section, "METHOD") /= do_loc_none) &
516 90 : .AND. (section_get_ival(localize_section, "METHOD") /= do_loc_jacobi)) THEN
517 0 : CPABORT("ROKS works only with LOCALIZE METHOD NONE or JACOBI")
518 : ELSE
519 376 : ALLOCATE (occupied_orbs(dft_control%nspins))
520 376 : ALLOCATE (occupied_evals(dft_control%nspins))
521 376 : ALLOCATE (homo_localized(dft_control%nspins))
522 196 : DO ispin = 1, dft_control%nspins
523 : CALL get_mo_set(mo_set=mos(ispin), mo_coeff=mo_coeff, &
524 106 : eigenvalues=mo_eigenvalues)
525 106 : occupied_orbs(ispin) = mo_coeff
526 106 : occupied_evals(ispin)%array => mo_eigenvalues
527 106 : CALL cp_fm_create(homo_localized(ispin), occupied_orbs(ispin)%matrix_struct)
528 196 : CALL cp_fm_to_fm(occupied_orbs(ispin), homo_localized(ispin))
529 : END DO
530 :
531 90 : CALL get_qs_env(qs_env, mo_loc_history=mo_loc_history)
532 90 : do_homo = .TRUE.
533 :
534 720 : ALLOCATE (qs_loc_env_homo)
535 90 : CALL qs_loc_env_create(qs_loc_env_homo)
536 90 : CALL qs_loc_control_init(qs_loc_env_homo, localize_section, do_homo=do_homo)
537 : CALL qs_loc_init(qs_env, qs_loc_env_homo, localize_section, homo_localized, do_homo, &
538 90 : do_mo_cubes, mo_loc_history=mo_loc_history)
539 : CALL get_localization_info(qs_env, qs_loc_env_homo, localize_section, homo_localized, &
540 90 : wf_r, wf_g, particles, occupied_orbs, occupied_evals, marked_states)
541 :
542 : !retain the homo_localized for future use
543 90 : IF (qs_loc_env_homo%localized_wfn_control%use_history) THEN
544 10 : CALL retain_history(mo_loc_history, homo_localized)
545 10 : CALL set_qs_env(qs_env, mo_loc_history=mo_loc_history)
546 : END IF
547 :
548 : !write restart for localization of occupied orbitals
549 : CALL loc_write_restart(qs_loc_env_homo, loc_print_section, mos, &
550 90 : homo_localized, do_homo)
551 90 : CALL cp_fm_release(homo_localized)
552 90 : DEALLOCATE (occupied_orbs)
553 90 : DEALLOCATE (occupied_evals)
554 : ! Print Total Dipole if the localization has been performed
555 180 : IF (qs_loc_env_homo%do_localize) THEN
556 74 : CALL loc_dipole(input, dft_control, qs_loc_env_homo, logger, qs_env)
557 : END IF
558 : END IF
559 : END IF
560 :
561 : ! Gets the lumos, and eigenvalues for the lumos, and localize them if requested
562 10053 : IF (do_kpoints) THEN
563 220 : IF (do_mo_cubes .OR. p_loc_lumo) THEN
564 : ! nothing at the moment, not implemented
565 2 : CPWARN("Localization and MO related output not implemented for k-point calculations!")
566 : END IF
567 : ELSE
568 9833 : compute_lumos = do_mo_cubes .AND. nlumo /= 0
569 9833 : compute_lumos = compute_lumos .OR. p_loc_lumo
570 :
571 21556 : DO ispin = 1, dft_control%nspins
572 11723 : CALL get_mo_set(mo_set=mos(ispin), homo=homo, nmo=nmo)
573 33231 : compute_lumos = compute_lumos .AND. homo == nmo
574 : END DO
575 :
576 9833 : IF (do_mo_cubes .AND. .NOT. compute_lumos) THEN
577 :
578 96 : nlumo = section_get_ival(dft_section, "PRINT%MO_CUBES%NLUMO")
579 194 : DO ispin = 1, dft_control%nspins
580 :
581 98 : CALL get_mo_set(mo_set=mos(ispin), homo=homo, nmo=nmo, eigenvalues=mo_eigenvalues)
582 194 : IF (nlumo > nmo - homo) THEN
583 : ! this case not yet implemented
584 : ELSE
585 98 : IF (nlumo == -1) THEN
586 0 : nlumo = nmo - homo
587 : END IF
588 98 : IF (output_unit > 0) WRITE (output_unit, *) " "
589 98 : IF (output_unit > 0) WRITE (output_unit, *) " Lowest eigenvalues of the unoccupied subspace spin ", ispin
590 98 : IF (output_unit > 0) WRITE (output_unit, *) "---------------------------------------------"
591 98 : IF (output_unit > 0) WRITE (output_unit, '(4(1X,1F16.8))') mo_eigenvalues(homo + 1:homo + nlumo)
592 :
593 : ! Prints the cube files of UNOCCUPIED ORBITALS
594 98 : CALL get_mo_set(mo_set=mos(ispin), mo_coeff=mo_coeff)
595 : CALL qs_scf_post_unocc_cubes(input, dft_section, dft_control, logger, qs_env, &
596 98 : mo_coeff, wf_g, wf_r, particles, nlumo, homo, ispin, lumo=homo + 1)
597 : END IF
598 : END DO
599 :
600 : END IF
601 :
602 9801 : IF (compute_lumos) THEN
603 32 : check_write = .TRUE.
604 32 : min_lumos = nlumo
605 32 : IF (nlumo == 0) check_write = .FALSE.
606 32 : IF (p_loc_lumo) THEN
607 6 : do_homo = .FALSE.
608 48 : ALLOCATE (qs_loc_env_lumo)
609 6 : CALL qs_loc_env_create(qs_loc_env_lumo)
610 6 : CALL qs_loc_control_init(qs_loc_env_lumo, localize_section, do_homo=do_homo)
611 98 : min_lumos = MAX(MAXVAL(qs_loc_env_lumo%localized_wfn_control%loc_states(:, :)), nlumo)
612 : END IF
613 :
614 144 : ALLOCATE (unoccupied_orbs(dft_control%nspins))
615 144 : ALLOCATE (unoccupied_evals(dft_control%nspins))
616 32 : CALL make_lumo_gpw(qs_env, scf_env, unoccupied_orbs, unoccupied_evals, min_lumos, nlumos)
617 32 : lumo_ptr => unoccupied_orbs
618 80 : DO ispin = 1, dft_control%nspins
619 48 : has_lumo = .TRUE.
620 48 : homo_lumo(ispin, 2) = unoccupied_evals(ispin)%array(1)
621 48 : CALL get_mo_set(mo_set=mos(ispin), homo=homo)
622 80 : IF (check_write) THEN
623 48 : IF (p_loc_lumo .AND. nlumo /= -1) nlumos = MIN(nlumo, nlumos)
624 : ! Prints the cube files of UNOCCUPIED ORBITALS
625 : CALL qs_scf_post_unocc_cubes(input, dft_section, dft_control, logger, qs_env, &
626 48 : unoccupied_orbs(ispin), wf_g, wf_r, particles, nlumos, homo, ispin)
627 : END IF
628 : END DO
629 :
630 64 : IF (p_loc_lumo) THEN
631 30 : ALLOCATE (lumo_localized(dft_control%nspins))
632 18 : DO ispin = 1, dft_control%nspins
633 12 : CALL cp_fm_create(lumo_localized(ispin), unoccupied_orbs(ispin)%matrix_struct)
634 18 : CALL cp_fm_to_fm(unoccupied_orbs(ispin), lumo_localized(ispin))
635 : END DO
636 : CALL qs_loc_init(qs_env, qs_loc_env_lumo, localize_section, lumo_localized, do_homo, do_mo_cubes, &
637 6 : evals=unoccupied_evals)
638 : CALL qs_loc_env_init(qs_loc_env_lumo, qs_loc_env_lumo%localized_wfn_control, qs_env, &
639 6 : loc_coeff=unoccupied_orbs)
640 : CALL get_localization_info(qs_env, qs_loc_env_lumo, localize_section, &
641 : lumo_localized, wf_r, wf_g, particles, &
642 6 : unoccupied_orbs, unoccupied_evals, marked_states)
643 : CALL loc_write_restart(qs_loc_env_lumo, loc_print_section, mos, homo_localized, do_homo, &
644 6 : evals=unoccupied_evals)
645 6 : lumo_ptr => lumo_localized
646 : END IF
647 : END IF
648 :
649 9833 : IF (has_homo .AND. has_lumo) THEN
650 32 : IF (output_unit > 0) WRITE (output_unit, *) " "
651 80 : DO ispin = 1, dft_control%nspins
652 80 : IF (.NOT. scf_control%smear%do_smear) THEN
653 48 : gap = homo_lumo(ispin, 2) - homo_lumo(ispin, 1)
654 48 : IF (output_unit > 0) WRITE (output_unit, '(T2,A,F12.6)') &
655 24 : "HOMO - LUMO gap [eV] :", gap*evolt
656 : END IF
657 : END DO
658 : END IF
659 : END IF
660 :
661 10053 : IF (p_loc_mixed) THEN
662 2 : IF (do_kpoints) THEN
663 0 : CPWARN("Localization not implemented for k-point calculations!")
664 2 : ELSEIF (dft_control%restricted) THEN
665 0 : IF (output_unit > 0) WRITE (output_unit, *) &
666 0 : " Unclear how we define MOs / localization in the restricted case... skipping"
667 : ELSE
668 :
669 8 : ALLOCATE (mixed_orbs(dft_control%nspins))
670 8 : ALLOCATE (mixed_evals(dft_control%nspins))
671 8 : ALLOCATE (mixed_localized(dft_control%nspins))
672 4 : DO ispin = 1, dft_control%nspins
673 : CALL get_mo_set(mo_set=mos(ispin), mo_coeff=mo_coeff, &
674 2 : eigenvalues=mo_eigenvalues)
675 2 : mixed_orbs(ispin) = mo_coeff
676 2 : mixed_evals(ispin)%array => mo_eigenvalues
677 2 : CALL cp_fm_create(mixed_localized(ispin), mixed_orbs(ispin)%matrix_struct)
678 4 : CALL cp_fm_to_fm(mixed_orbs(ispin), mixed_localized(ispin))
679 : END DO
680 :
681 2 : CALL get_qs_env(qs_env, mo_loc_history=mo_loc_history)
682 2 : do_homo = .FALSE.
683 2 : do_mixed = .TRUE.
684 2 : total_zeff_corr = scf_env%sum_zeff_corr
685 16 : ALLOCATE (qs_loc_env_mixed)
686 2 : CALL qs_loc_env_create(qs_loc_env_mixed)
687 2 : CALL qs_loc_control_init(qs_loc_env_mixed, localize_section, do_homo=do_homo, do_mixed=do_mixed)
688 : CALL qs_loc_init(qs_env, qs_loc_env_mixed, localize_section, mixed_localized, do_homo, &
689 : do_mo_cubes, mo_loc_history=mo_loc_history, tot_zeff_corr=total_zeff_corr, &
690 2 : do_mixed=do_mixed)
691 :
692 4 : DO ispin = 1, dft_control%nspins
693 4 : CALL cp_fm_get_info(mixed_localized(ispin), ncol_global=nchk_nmoloc)
694 : END DO
695 :
696 : CALL get_localization_info(qs_env, qs_loc_env_mixed, localize_section, mixed_localized, &
697 2 : wf_r, wf_g, particles, mixed_orbs, mixed_evals, marked_states)
698 :
699 : !retain the homo_localized for future use
700 2 : IF (qs_loc_env_mixed%localized_wfn_control%use_history) THEN
701 0 : CALL retain_history(mo_loc_history, mixed_localized)
702 0 : CALL set_qs_env(qs_env, mo_loc_history=mo_loc_history)
703 : END IF
704 :
705 : !write restart for localization of occupied orbitals
706 : CALL loc_write_restart(qs_loc_env_mixed, loc_print_section, mos, &
707 2 : mixed_localized, do_homo, do_mixed=do_mixed)
708 2 : CALL cp_fm_release(mixed_localized)
709 2 : DEALLOCATE (mixed_orbs)
710 4 : DEALLOCATE (mixed_evals)
711 : ! Print Total Dipole if the localization has been performed
712 : ! Revisit the formalism later
713 : !IF (qs_loc_env_mixed%do_localize) THEN
714 : ! CALL loc_dipole(input, dft_control, qs_loc_env_mixed, logger, qs_env)
715 : !END IF
716 : END IF
717 : END IF
718 :
719 : ! Deallocate grids needed to compute wavefunctions
720 10053 : IF (((do_mo_cubes .OR. do_wannier_cubes) .AND. (nlumo /= 0 .OR. nhomo /= 0)) .OR. p_loc) THEN
721 210 : CALL auxbas_pw_pool%give_back_pw(wf_r)
722 210 : CALL auxbas_pw_pool%give_back_pw(wf_g)
723 : END IF
724 :
725 : ! Destroy the localization environment
726 10053 : IF (.NOT. do_kpoints) THEN
727 9833 : IF (p_loc_homo) THEN
728 90 : CALL qs_loc_env_release(qs_loc_env_homo)
729 90 : DEALLOCATE (qs_loc_env_homo)
730 : END IF
731 9833 : IF (p_loc_lumo) THEN
732 6 : CALL qs_loc_env_release(qs_loc_env_lumo)
733 6 : DEALLOCATE (qs_loc_env_lumo)
734 : END IF
735 9833 : IF (p_loc_mixed) THEN
736 2 : CALL qs_loc_env_release(qs_loc_env_mixed)
737 2 : DEALLOCATE (qs_loc_env_mixed)
738 : END IF
739 : END IF
740 :
741 : ! generate a mix of wfns, and write to a restart
742 10053 : IF (do_kpoints) THEN
743 : ! nothing at the moment, not implemented
744 : ELSE
745 9833 : CALL get_qs_env(qs_env, matrix_s=matrix_s, para_env=para_env)
746 : CALL wfn_mix(mos, particle_set, dft_section, qs_kind_set, para_env, &
747 : output_unit, unoccupied_orbs=lumo_ptr, scf_env=scf_env, &
748 9833 : matrix_s=matrix_s, marked_states=marked_states)
749 :
750 9833 : IF (p_loc_lumo) CALL cp_fm_release(lumo_localized)
751 : END IF
752 10053 : IF (ASSOCIATED(marked_states)) THEN
753 16 : DEALLOCATE (marked_states)
754 : END IF
755 :
756 : ! This is just a deallocation for printing MO_CUBES or TDDFPT
757 10053 : IF (.NOT. do_kpoints) THEN
758 9833 : IF (compute_lumos) THEN
759 80 : DO ispin = 1, dft_control%nspins
760 48 : DEALLOCATE (unoccupied_evals(ispin)%array)
761 80 : CALL cp_fm_release(unoccupied_orbs(ispin))
762 : END DO
763 32 : DEALLOCATE (unoccupied_evals)
764 32 : DEALLOCATE (unoccupied_orbs)
765 : END IF
766 : END IF
767 :
768 : !stm images
769 10053 : IF (do_stm) THEN
770 6 : IF (do_kpoints) THEN
771 0 : CPWARN("STM not implemented for k-point calculations!")
772 : ELSE
773 6 : NULLIFY (unoccupied_orbs_stm, unoccupied_evals_stm)
774 6 : IF (nlumo_stm > 0) THEN
775 8 : ALLOCATE (unoccupied_orbs_stm(dft_control%nspins))
776 8 : ALLOCATE (unoccupied_evals_stm(dft_control%nspins))
777 : CALL make_lumo_gpw(qs_env, scf_env, unoccupied_orbs_stm, unoccupied_evals_stm, &
778 2 : nlumo_stm, nlumos)
779 : END IF
780 :
781 : CALL th_stm_image(qs_env, stm_section, particles, unoccupied_orbs_stm, &
782 6 : unoccupied_evals_stm)
783 :
784 6 : IF (nlumo_stm > 0) THEN
785 4 : DO ispin = 1, dft_control%nspins
786 4 : DEALLOCATE (unoccupied_evals_stm(ispin)%array)
787 : END DO
788 2 : DEALLOCATE (unoccupied_evals_stm)
789 2 : CALL cp_fm_release(unoccupied_orbs_stm)
790 : END IF
791 : END IF
792 : END IF
793 :
794 : ! Print coherent X-ray diffraction spectrum
795 10053 : CALL qs_scf_post_xray(input, dft_section, logger, qs_env, output_unit)
796 :
797 : ! Calculation of Electric Field Gradients
798 10053 : CALL qs_scf_post_efg(input, logger, qs_env)
799 :
800 : ! Calculation of ET
801 10053 : CALL qs_scf_post_et(input, qs_env, dft_control)
802 :
803 : ! Calculation of EPR Hyperfine Coupling Tensors
804 10053 : CALL qs_scf_post_epr(input, logger, qs_env)
805 :
806 : ! Calculation of properties needed for BASIS_MOLOPT optimizations
807 10053 : CALL qs_scf_post_molopt(input, logger, qs_env)
808 :
809 : ! Calculate ELF
810 10053 : CALL qs_scf_post_elf(input, logger, qs_env)
811 :
812 : ! Use Wannier90 interface
813 10053 : CALL wannier90_interface(input, logger, qs_env)
814 :
815 10053 : IF (my_do_mp2) THEN
816 : ! Get everything back
817 742 : DO ispin = 1, dft_control%nspins
818 742 : CALL dbcsr_add(rho_ao(ispin, 1)%matrix, matrix_p_mp2(ispin)%matrix, 1.0_dp, -1.0_dp)
819 : END DO
820 322 : CALL qs_rho_update_rho(rho, qs_env=qs_env)
821 322 : CALL qs_ks_did_change(qs_env%ks_env, rho_changed=.TRUE.)
822 : END IF
823 :
824 10053 : CALL timestop(handle)
825 :
826 20106 : END SUBROUTINE scf_post_calculation_gpw
827 :
828 : ! **************************************************************************************************
829 : !> \brief Gets the lumos, and eigenvalues for the lumos
830 : !> \param qs_env ...
831 : !> \param scf_env ...
832 : !> \param unoccupied_orbs ...
833 : !> \param unoccupied_evals ...
834 : !> \param nlumo ...
835 : !> \param nlumos ...
836 : ! **************************************************************************************************
837 34 : SUBROUTINE make_lumo_gpw(qs_env, scf_env, unoccupied_orbs, unoccupied_evals, nlumo, nlumos)
838 :
839 : TYPE(qs_environment_type), POINTER :: qs_env
840 : TYPE(qs_scf_env_type), POINTER :: scf_env
841 : TYPE(cp_fm_type), DIMENSION(:), INTENT(INOUT) :: unoccupied_orbs
842 : TYPE(cp_1d_r_p_type), DIMENSION(:), POINTER :: unoccupied_evals
843 : INTEGER, INTENT(IN) :: nlumo
844 : INTEGER, INTENT(OUT) :: nlumos
845 :
846 : CHARACTER(len=*), PARAMETER :: routineN = 'make_lumo_gpw'
847 :
848 : INTEGER :: handle, homo, ispin, n, nao, nmo, &
849 : output_unit
850 : TYPE(admm_type), POINTER :: admm_env
851 : TYPE(cp_blacs_env_type), POINTER :: blacs_env
852 : TYPE(cp_fm_struct_type), POINTER :: fm_struct_tmp
853 : TYPE(cp_fm_type), POINTER :: mo_coeff
854 : TYPE(cp_logger_type), POINTER :: logger
855 34 : TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: ks_rmpv, matrix_s
856 : TYPE(dft_control_type), POINTER :: dft_control
857 34 : TYPE(mo_set_type), DIMENSION(:), POINTER :: mos
858 : TYPE(mp_para_env_type), POINTER :: para_env
859 : TYPE(preconditioner_type), POINTER :: local_preconditioner
860 : TYPE(scf_control_type), POINTER :: scf_control
861 :
862 34 : CALL timeset(routineN, handle)
863 :
864 34 : NULLIFY (mos, ks_rmpv, scf_control, dft_control, admm_env, para_env, blacs_env)
865 : CALL get_qs_env(qs_env, &
866 : mos=mos, &
867 : matrix_ks=ks_rmpv, &
868 : scf_control=scf_control, &
869 : dft_control=dft_control, &
870 : matrix_s=matrix_s, &
871 : admm_env=admm_env, &
872 : para_env=para_env, &
873 34 : blacs_env=blacs_env)
874 :
875 34 : logger => cp_get_default_logger()
876 34 : output_unit = cp_logger_get_default_io_unit(logger)
877 :
878 84 : DO ispin = 1, dft_control%nspins
879 50 : NULLIFY (unoccupied_evals(ispin)%array)
880 : ! Always write eigenvalues
881 50 : IF (output_unit > 0) WRITE (output_unit, *) " "
882 50 : IF (output_unit > 0) WRITE (output_unit, *) " Lowest Eigenvalues of the unoccupied subspace spin ", ispin
883 50 : IF (output_unit > 0) WRITE (output_unit, FMT='(1X,A)') "-----------------------------------------------------"
884 50 : CALL get_mo_set(mo_set=mos(ispin), mo_coeff=mo_coeff, homo=homo, nao=nao, nmo=nmo)
885 50 : CALL cp_fm_get_info(mo_coeff, nrow_global=n)
886 50 : nlumos = MAX(1, MIN(nlumo, nao - nmo))
887 50 : IF (nlumo == -1) nlumos = nao - nmo
888 150 : ALLOCATE (unoccupied_evals(ispin)%array(nlumos))
889 : CALL cp_fm_struct_create(fm_struct_tmp, para_env=para_env, context=blacs_env, &
890 50 : nrow_global=n, ncol_global=nlumos)
891 50 : CALL cp_fm_create(unoccupied_orbs(ispin), fm_struct_tmp, name="lumos")
892 50 : CALL cp_fm_struct_release(fm_struct_tmp)
893 50 : CALL cp_fm_init_random(unoccupied_orbs(ispin), nlumos)
894 :
895 : ! the full_all preconditioner makes not much sense for lumos search
896 50 : NULLIFY (local_preconditioner)
897 50 : IF (ASSOCIATED(scf_env%ot_preconditioner)) THEN
898 26 : local_preconditioner => scf_env%ot_preconditioner(1)%preconditioner
899 : ! this one can for sure not be right (as it has to match a given C0)
900 26 : IF (local_preconditioner%in_use == ot_precond_full_all) THEN
901 4 : NULLIFY (local_preconditioner)
902 : END IF
903 : END IF
904 :
905 : ! If we do ADMM, we add have to modify the Kohn-Sham matrix
906 50 : IF (dft_control%do_admm) THEN
907 0 : CALL admm_correct_for_eigenvalues(ispin, admm_env, ks_rmpv(ispin)%matrix)
908 : END IF
909 :
910 : CALL ot_eigensolver(matrix_h=ks_rmpv(ispin)%matrix, matrix_s=matrix_s(1)%matrix, &
911 : matrix_c_fm=unoccupied_orbs(ispin), &
912 : matrix_orthogonal_space_fm=mo_coeff, &
913 : eps_gradient=scf_control%eps_lumos, &
914 : preconditioner=local_preconditioner, &
915 : iter_max=scf_control%max_iter_lumos, &
916 50 : size_ortho_space=nmo)
917 :
918 : CALL calculate_subspace_eigenvalues(unoccupied_orbs(ispin), ks_rmpv(ispin)%matrix, &
919 : unoccupied_evals(ispin)%array, scr=output_unit, &
920 50 : ionode=output_unit > 0)
921 :
922 : ! If we do ADMM, we restore the original Kohn-Sham matrix
923 134 : IF (dft_control%do_admm) THEN
924 0 : CALL admm_uncorrect_for_eigenvalues(ispin, admm_env, ks_rmpv(ispin)%matrix)
925 : END IF
926 :
927 : END DO
928 :
929 34 : CALL timestop(handle)
930 :
931 34 : END SUBROUTINE make_lumo_gpw
932 : ! **************************************************************************************************
933 : !> \brief Computes and Prints Atomic Charges with several methods
934 : !> \param input ...
935 : !> \param logger ...
936 : !> \param qs_env the qs_env in which the qs_env lives
937 : ! **************************************************************************************************
938 10053 : SUBROUTINE qs_scf_post_charges(input, logger, qs_env)
939 : TYPE(section_vals_type), POINTER :: input
940 : TYPE(cp_logger_type), POINTER :: logger
941 : TYPE(qs_environment_type), POINTER :: qs_env
942 :
943 : CHARACTER(len=*), PARAMETER :: routineN = 'qs_scf_post_charges'
944 :
945 : INTEGER :: handle, print_level, unit_nr
946 : LOGICAL :: do_kpoints, print_it
947 : TYPE(section_vals_type), POINTER :: density_fit_section, print_key
948 :
949 10053 : CALL timeset(routineN, handle)
950 :
951 10053 : CALL get_qs_env(qs_env=qs_env, do_kpoints=do_kpoints)
952 :
953 : ! Mulliken charges require no further computation and are printed from write_mo_free_results
954 :
955 : ! Compute the Lowdin charges
956 10053 : print_key => section_vals_get_subs_vals(input, "DFT%PRINT%LOWDIN")
957 10053 : IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
958 : unit_nr = cp_print_key_unit_nr(logger, input, "DFT%PRINT%LOWDIN", extension=".lowdin", &
959 82 : log_filename=.FALSE.)
960 82 : print_level = 1
961 82 : CALL section_vals_val_get(print_key, "PRINT_GOP", l_val=print_it)
962 82 : IF (print_it) print_level = 2
963 82 : CALL section_vals_val_get(print_key, "PRINT_ALL", l_val=print_it)
964 82 : IF (print_it) print_level = 3
965 82 : IF (do_kpoints) THEN
966 2 : CPWARN("Lowdin charges not implemented for k-point calculations!")
967 : ELSE
968 80 : CALL lowdin_population_analysis(qs_env, unit_nr, print_level)
969 : END IF
970 82 : CALL cp_print_key_finished_output(unit_nr, logger, input, "DFT%PRINT%LOWDIN")
971 : END IF
972 :
973 : ! Compute the RESP charges
974 10053 : CALL resp_fit(qs_env)
975 :
976 : ! Compute the Density Derived Atomic Point charges with the Bloechl scheme
977 10053 : print_key => section_vals_get_subs_vals(input, "PROPERTIES%FIT_CHARGE")
978 10053 : IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
979 : unit_nr = cp_print_key_unit_nr(logger, input, "PROPERTIES%FIT_CHARGE", extension=".Fitcharge", &
980 102 : log_filename=.FALSE.)
981 102 : density_fit_section => section_vals_get_subs_vals(input, "DFT%DENSITY_FITTING")
982 102 : CALL get_ddapc(qs_env, .FALSE., density_fit_section, iwc=unit_nr)
983 102 : CALL cp_print_key_finished_output(unit_nr, logger, input, "PROPERTIES%FIT_CHARGE")
984 : END IF
985 :
986 10053 : CALL timestop(handle)
987 :
988 10053 : END SUBROUTINE qs_scf_post_charges
989 :
990 : ! **************************************************************************************************
991 : !> \brief Computes and prints the Cube Files for MO
992 : !> \param input ...
993 : !> \param dft_section ...
994 : !> \param dft_control ...
995 : !> \param logger ...
996 : !> \param qs_env the qs_env in which the qs_env lives
997 : !> \param mo_coeff ...
998 : !> \param wf_g ...
999 : !> \param wf_r ...
1000 : !> \param particles ...
1001 : !> \param homo ...
1002 : !> \param ispin ...
1003 : ! **************************************************************************************************
1004 146 : SUBROUTINE qs_scf_post_occ_cubes(input, dft_section, dft_control, logger, qs_env, &
1005 : mo_coeff, wf_g, wf_r, particles, homo, ispin)
1006 : TYPE(section_vals_type), POINTER :: input, dft_section
1007 : TYPE(dft_control_type), POINTER :: dft_control
1008 : TYPE(cp_logger_type), POINTER :: logger
1009 : TYPE(qs_environment_type), POINTER :: qs_env
1010 : TYPE(cp_fm_type), INTENT(IN) :: mo_coeff
1011 : TYPE(pw_c1d_gs_type), INTENT(INOUT) :: wf_g
1012 : TYPE(pw_r3d_rs_type), INTENT(INOUT) :: wf_r
1013 : TYPE(particle_list_type), POINTER :: particles
1014 : INTEGER, INTENT(IN) :: homo, ispin
1015 :
1016 : CHARACTER(len=*), PARAMETER :: routineN = 'qs_scf_post_occ_cubes'
1017 :
1018 : CHARACTER(LEN=default_path_length) :: filename, my_pos_cube, title
1019 : INTEGER :: handle, i, ir, ivector, n_rep, nhomo, &
1020 : nlist, unit_nr
1021 146 : INTEGER, DIMENSION(:), POINTER :: list, list_index
1022 : LOGICAL :: append_cube, mpi_io
1023 146 : TYPE(atomic_kind_type), DIMENSION(:), POINTER :: atomic_kind_set
1024 : TYPE(cell_type), POINTER :: cell
1025 146 : TYPE(particle_type), DIMENSION(:), POINTER :: particle_set
1026 : TYPE(pw_env_type), POINTER :: pw_env
1027 146 : TYPE(qs_kind_type), DIMENSION(:), POINTER :: qs_kind_set
1028 :
1029 146 : CALL timeset(routineN, handle)
1030 :
1031 146 : NULLIFY (list_index)
1032 :
1033 : IF (BTEST(cp_print_key_should_output(logger%iter_info, dft_section, "PRINT%MO_CUBES") &
1034 146 : , cp_p_file) .AND. section_get_lval(dft_section, "PRINT%MO_CUBES%WRITE_CUBE")) THEN
1035 108 : nhomo = section_get_ival(dft_section, "PRINT%MO_CUBES%NHOMO")
1036 108 : append_cube = section_get_lval(dft_section, "PRINT%MO_CUBES%APPEND")
1037 108 : my_pos_cube = "REWIND"
1038 108 : IF (append_cube) THEN
1039 0 : my_pos_cube = "APPEND"
1040 : END IF
1041 108 : CALL section_vals_val_get(dft_section, "PRINT%MO_CUBES%HOMO_LIST", n_rep_val=n_rep)
1042 108 : IF (n_rep > 0) THEN ! write the cubes of the list
1043 0 : nlist = 0
1044 0 : DO ir = 1, n_rep
1045 0 : NULLIFY (list)
1046 : CALL section_vals_val_get(dft_section, "PRINT%MO_CUBES%HOMO_LIST", i_rep_val=ir, &
1047 0 : i_vals=list)
1048 0 : IF (ASSOCIATED(list)) THEN
1049 0 : CALL reallocate(list_index, 1, nlist + SIZE(list))
1050 0 : DO i = 1, SIZE(list)
1051 0 : list_index(i + nlist) = list(i)
1052 : END DO
1053 0 : nlist = nlist + SIZE(list)
1054 : END IF
1055 : END DO
1056 : ELSE
1057 :
1058 108 : IF (nhomo == -1) nhomo = homo
1059 108 : nlist = homo - MAX(1, homo - nhomo + 1) + 1
1060 324 : ALLOCATE (list_index(nlist))
1061 220 : DO i = 1, nlist
1062 220 : list_index(i) = MAX(1, homo - nhomo + 1) + i - 1
1063 : END DO
1064 : END IF
1065 220 : DO i = 1, nlist
1066 112 : ivector = list_index(i)
1067 : CALL get_qs_env(qs_env=qs_env, &
1068 : atomic_kind_set=atomic_kind_set, &
1069 : qs_kind_set=qs_kind_set, &
1070 : cell=cell, &
1071 : particle_set=particle_set, &
1072 112 : pw_env=pw_env)
1073 : CALL calculate_wavefunction(mo_coeff, ivector, wf_r, wf_g, atomic_kind_set, qs_kind_set, &
1074 112 : cell, dft_control, particle_set, pw_env)
1075 112 : WRITE (filename, '(a4,I5.5,a1,I1.1)') "WFN_", ivector, "_", ispin
1076 112 : mpi_io = .TRUE.
1077 : unit_nr = cp_print_key_unit_nr(logger, input, "DFT%PRINT%MO_CUBES", extension=".cube", &
1078 : middle_name=TRIM(filename), file_position=my_pos_cube, log_filename=.FALSE., &
1079 112 : mpi_io=mpi_io)
1080 112 : WRITE (title, *) "WAVEFUNCTION ", ivector, " spin ", ispin, " i.e. HOMO - ", ivector - homo
1081 : CALL cp_pw_to_cube(wf_r, unit_nr, title, particles=particles, &
1082 : stride=section_get_ivals(dft_section, "PRINT%MO_CUBES%STRIDE"), &
1083 : max_file_size_mb=section_get_rval(dft_section, "PRINT%MO_CUBES%MAX_FILE_SIZE_MB"), &
1084 112 : mpi_io=mpi_io)
1085 220 : CALL cp_print_key_finished_output(unit_nr, logger, input, "DFT%PRINT%MO_CUBES", mpi_io=mpi_io)
1086 : END DO
1087 108 : IF (ASSOCIATED(list_index)) DEALLOCATE (list_index)
1088 : END IF
1089 :
1090 146 : CALL timestop(handle)
1091 :
1092 146 : END SUBROUTINE qs_scf_post_occ_cubes
1093 :
1094 : ! **************************************************************************************************
1095 : !> \brief Computes and prints the Cube Files for MO
1096 : !> \param input ...
1097 : !> \param dft_section ...
1098 : !> \param dft_control ...
1099 : !> \param logger ...
1100 : !> \param qs_env the qs_env in which the qs_env lives
1101 : !> \param unoccupied_orbs ...
1102 : !> \param wf_g ...
1103 : !> \param wf_r ...
1104 : !> \param particles ...
1105 : !> \param nlumos ...
1106 : !> \param homo ...
1107 : !> \param ispin ...
1108 : !> \param lumo ...
1109 : ! **************************************************************************************************
1110 146 : SUBROUTINE qs_scf_post_unocc_cubes(input, dft_section, dft_control, logger, qs_env, &
1111 : unoccupied_orbs, wf_g, wf_r, particles, nlumos, homo, ispin, lumo)
1112 :
1113 : TYPE(section_vals_type), POINTER :: input, dft_section
1114 : TYPE(dft_control_type), POINTER :: dft_control
1115 : TYPE(cp_logger_type), POINTER :: logger
1116 : TYPE(qs_environment_type), POINTER :: qs_env
1117 : TYPE(cp_fm_type), INTENT(IN) :: unoccupied_orbs
1118 : TYPE(pw_c1d_gs_type), INTENT(INOUT) :: wf_g
1119 : TYPE(pw_r3d_rs_type), INTENT(INOUT) :: wf_r
1120 : TYPE(particle_list_type), POINTER :: particles
1121 : INTEGER, INTENT(IN) :: nlumos, homo, ispin
1122 : INTEGER, INTENT(IN), OPTIONAL :: lumo
1123 :
1124 : CHARACTER(len=*), PARAMETER :: routineN = 'qs_scf_post_unocc_cubes'
1125 :
1126 : CHARACTER(LEN=default_path_length) :: filename, my_pos_cube, title
1127 : INTEGER :: handle, ifirst, index_mo, ivector, &
1128 : unit_nr
1129 : LOGICAL :: append_cube, mpi_io
1130 146 : TYPE(atomic_kind_type), DIMENSION(:), POINTER :: atomic_kind_set
1131 : TYPE(cell_type), POINTER :: cell
1132 146 : TYPE(particle_type), DIMENSION(:), POINTER :: particle_set
1133 : TYPE(pw_env_type), POINTER :: pw_env
1134 146 : TYPE(qs_kind_type), DIMENSION(:), POINTER :: qs_kind_set
1135 :
1136 146 : CALL timeset(routineN, handle)
1137 :
1138 : IF (BTEST(cp_print_key_should_output(logger%iter_info, dft_section, "PRINT%MO_CUBES"), cp_p_file) &
1139 146 : .AND. section_get_lval(dft_section, "PRINT%MO_CUBES%WRITE_CUBE")) THEN
1140 108 : NULLIFY (qs_kind_set, particle_set, pw_env, cell)
1141 108 : append_cube = section_get_lval(dft_section, "PRINT%MO_CUBES%APPEND")
1142 108 : my_pos_cube = "REWIND"
1143 108 : IF (append_cube) THEN
1144 0 : my_pos_cube = "APPEND"
1145 : END IF
1146 108 : ifirst = 1
1147 108 : IF (PRESENT(lumo)) ifirst = lumo
1148 250 : DO ivector = ifirst, ifirst + nlumos - 1
1149 : CALL get_qs_env(qs_env=qs_env, &
1150 : atomic_kind_set=atomic_kind_set, &
1151 : qs_kind_set=qs_kind_set, &
1152 : cell=cell, &
1153 : particle_set=particle_set, &
1154 142 : pw_env=pw_env)
1155 : CALL calculate_wavefunction(unoccupied_orbs, ivector, wf_r, wf_g, atomic_kind_set, &
1156 142 : qs_kind_set, cell, dft_control, particle_set, pw_env)
1157 :
1158 142 : IF (ifirst == 1) THEN
1159 130 : index_mo = homo + ivector
1160 : ELSE
1161 12 : index_mo = ivector
1162 : END IF
1163 142 : WRITE (filename, '(a4,I5.5,a1,I1.1)') "WFN_", index_mo, "_", ispin
1164 142 : mpi_io = .TRUE.
1165 :
1166 : unit_nr = cp_print_key_unit_nr(logger, input, "DFT%PRINT%MO_CUBES", extension=".cube", &
1167 : middle_name=TRIM(filename), file_position=my_pos_cube, log_filename=.FALSE., &
1168 142 : mpi_io=mpi_io)
1169 142 : WRITE (title, *) "WAVEFUNCTION ", index_mo, " spin ", ispin, " i.e. LUMO + ", ifirst + ivector - 2
1170 : CALL cp_pw_to_cube(wf_r, unit_nr, title, particles=particles, &
1171 : stride=section_get_ivals(dft_section, "PRINT%MO_CUBES%STRIDE"), &
1172 : max_file_size_mb=section_get_rval(dft_section, "PRINT%MO_CUBES%MAX_FILE_SIZE_MB"), &
1173 142 : mpi_io=mpi_io)
1174 250 : CALL cp_print_key_finished_output(unit_nr, logger, input, "DFT%PRINT%MO_CUBES", mpi_io=mpi_io)
1175 : END DO
1176 : END IF
1177 :
1178 146 : CALL timestop(handle)
1179 :
1180 146 : END SUBROUTINE qs_scf_post_unocc_cubes
1181 :
1182 : ! **************************************************************************************************
1183 : !> \brief Computes and prints electric moments
1184 : !> \param input ...
1185 : !> \param logger ...
1186 : !> \param qs_env the qs_env in which the qs_env lives
1187 : !> \param output_unit ...
1188 : ! **************************************************************************************************
1189 11239 : SUBROUTINE qs_scf_post_moments(input, logger, qs_env, output_unit)
1190 : TYPE(section_vals_type), POINTER :: input
1191 : TYPE(cp_logger_type), POINTER :: logger
1192 : TYPE(qs_environment_type), POINTER :: qs_env
1193 : INTEGER, INTENT(IN) :: output_unit
1194 :
1195 : CHARACTER(len=*), PARAMETER :: routineN = 'qs_scf_post_moments'
1196 :
1197 : CHARACTER(LEN=default_path_length) :: filename
1198 : INTEGER :: handle, maxmom, reference, unit_nr
1199 : LOGICAL :: com_nl, do_kpoints, magnetic, periodic, &
1200 : second_ref_point, vel_reprs
1201 11239 : REAL(KIND=dp), DIMENSION(:), POINTER :: ref_point
1202 : TYPE(section_vals_type), POINTER :: print_key
1203 :
1204 11239 : CALL timeset(routineN, handle)
1205 :
1206 : print_key => section_vals_get_subs_vals(section_vals=input, &
1207 11239 : subsection_name="DFT%PRINT%MOMENTS")
1208 :
1209 11239 : IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
1210 :
1211 : maxmom = section_get_ival(section_vals=input, &
1212 1270 : keyword_name="DFT%PRINT%MOMENTS%MAX_MOMENT")
1213 : periodic = section_get_lval(section_vals=input, &
1214 1270 : keyword_name="DFT%PRINT%MOMENTS%PERIODIC")
1215 : reference = section_get_ival(section_vals=input, &
1216 1270 : keyword_name="DFT%PRINT%MOMENTS%REFERENCE")
1217 : magnetic = section_get_lval(section_vals=input, &
1218 1270 : keyword_name="DFT%PRINT%MOMENTS%MAGNETIC")
1219 : vel_reprs = section_get_lval(section_vals=input, &
1220 1270 : keyword_name="DFT%PRINT%MOMENTS%VEL_REPRS")
1221 : com_nl = section_get_lval(section_vals=input, &
1222 1270 : keyword_name="DFT%PRINT%MOMENTS%COM_NL")
1223 : second_ref_point = section_get_lval(section_vals=input, &
1224 1270 : keyword_name="DFT%PRINT%MOMENTS%SECOND_REFERENCE_POINT")
1225 :
1226 1270 : NULLIFY (ref_point)
1227 1270 : CALL section_vals_val_get(input, "DFT%PRINT%MOMENTS%REF_POINT", r_vals=ref_point)
1228 : unit_nr = cp_print_key_unit_nr(logger=logger, basis_section=input, &
1229 : print_key_path="DFT%PRINT%MOMENTS", extension=".dat", &
1230 1270 : middle_name="moments", log_filename=.FALSE.)
1231 :
1232 1270 : IF (output_unit > 0) THEN
1233 645 : IF (unit_nr /= output_unit) THEN
1234 33 : INQUIRE (UNIT=unit_nr, NAME=filename)
1235 : WRITE (UNIT=output_unit, FMT="(/,T2,A,2(/,T3,A),/)") &
1236 33 : "MOMENTS", "The electric/magnetic moments are written to file:", &
1237 66 : TRIM(filename)
1238 : ELSE
1239 612 : WRITE (UNIT=output_unit, FMT="(/,T2,A)") "ELECTRIC/MAGNETIC MOMENTS"
1240 : END IF
1241 : END IF
1242 :
1243 1270 : CALL get_qs_env(qs_env, do_kpoints=do_kpoints)
1244 :
1245 1270 : IF (do_kpoints) THEN
1246 2 : CPWARN("Moments not implemented for k-point calculations!")
1247 : ELSE
1248 1268 : IF (periodic) THEN
1249 472 : CALL qs_moment_berry_phase(qs_env, magnetic, maxmom, reference, ref_point, unit_nr)
1250 : ELSE
1251 796 : CALL qs_moment_locop(qs_env, magnetic, maxmom, reference, ref_point, unit_nr, vel_reprs, com_nl)
1252 : END IF
1253 : END IF
1254 :
1255 : CALL cp_print_key_finished_output(unit_nr=unit_nr, logger=logger, &
1256 1270 : basis_section=input, print_key_path="DFT%PRINT%MOMENTS")
1257 :
1258 1270 : IF (second_ref_point) THEN
1259 : reference = section_get_ival(section_vals=input, &
1260 0 : keyword_name="DFT%PRINT%MOMENTS%REFERENCE_2")
1261 :
1262 0 : NULLIFY (ref_point)
1263 0 : CALL section_vals_val_get(input, "DFT%PRINT%MOMENTS%REF_POINT_2", r_vals=ref_point)
1264 : unit_nr = cp_print_key_unit_nr(logger=logger, basis_section=input, &
1265 : print_key_path="DFT%PRINT%MOMENTS", extension=".dat", &
1266 0 : middle_name="moments_refpoint_2", log_filename=.FALSE.)
1267 :
1268 0 : IF (output_unit > 0) THEN
1269 0 : IF (unit_nr /= output_unit) THEN
1270 0 : INQUIRE (UNIT=unit_nr, NAME=filename)
1271 : WRITE (UNIT=output_unit, FMT="(/,T2,A,2(/,T3,A),/)") &
1272 0 : "MOMENTS", "The electric/magnetic moments for the second reference point are written to file:", &
1273 0 : TRIM(filename)
1274 : ELSE
1275 0 : WRITE (UNIT=output_unit, FMT="(/,T2,A)") "ELECTRIC/MAGNETIC MOMENTS"
1276 : END IF
1277 : END IF
1278 0 : IF (do_kpoints) THEN
1279 0 : CPWARN("Moments not implemented for k-point calculations!")
1280 : ELSE
1281 0 : IF (periodic) THEN
1282 0 : CALL qs_moment_berry_phase(qs_env, magnetic, maxmom, reference, ref_point, unit_nr)
1283 : ELSE
1284 0 : CALL qs_moment_locop(qs_env, magnetic, maxmom, reference, ref_point, unit_nr, vel_reprs, com_nl)
1285 : END IF
1286 : END IF
1287 : CALL cp_print_key_finished_output(unit_nr=unit_nr, logger=logger, &
1288 0 : basis_section=input, print_key_path="DFT%PRINT%MOMENTS")
1289 : END IF
1290 :
1291 : END IF
1292 :
1293 11239 : CALL timestop(handle)
1294 :
1295 11239 : END SUBROUTINE qs_scf_post_moments
1296 :
1297 : ! **************************************************************************************************
1298 : !> \brief Computes and prints the X-ray diffraction spectrum.
1299 : !> \param input ...
1300 : !> \param dft_section ...
1301 : !> \param logger ...
1302 : !> \param qs_env the qs_env in which the qs_env lives
1303 : !> \param output_unit ...
1304 : ! **************************************************************************************************
1305 10053 : SUBROUTINE qs_scf_post_xray(input, dft_section, logger, qs_env, output_unit)
1306 :
1307 : TYPE(section_vals_type), POINTER :: input, dft_section
1308 : TYPE(cp_logger_type), POINTER :: logger
1309 : TYPE(qs_environment_type), POINTER :: qs_env
1310 : INTEGER, INTENT(IN) :: output_unit
1311 :
1312 : CHARACTER(LEN=*), PARAMETER :: routineN = 'qs_scf_post_xray'
1313 :
1314 : CHARACTER(LEN=default_path_length) :: filename
1315 : INTEGER :: handle, unit_nr
1316 : REAL(KIND=dp) :: q_max
1317 : TYPE(section_vals_type), POINTER :: print_key
1318 :
1319 10053 : CALL timeset(routineN, handle)
1320 :
1321 : print_key => section_vals_get_subs_vals(section_vals=input, &
1322 10053 : subsection_name="DFT%PRINT%XRAY_DIFFRACTION_SPECTRUM")
1323 :
1324 10053 : IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
1325 : q_max = section_get_rval(section_vals=dft_section, &
1326 30 : keyword_name="PRINT%XRAY_DIFFRACTION_SPECTRUM%Q_MAX")
1327 : unit_nr = cp_print_key_unit_nr(logger=logger, &
1328 : basis_section=input, &
1329 : print_key_path="DFT%PRINT%XRAY_DIFFRACTION_SPECTRUM", &
1330 : extension=".dat", &
1331 : middle_name="xrd", &
1332 30 : log_filename=.FALSE.)
1333 30 : IF (output_unit > 0) THEN
1334 15 : INQUIRE (UNIT=unit_nr, NAME=filename)
1335 : WRITE (UNIT=output_unit, FMT="(/,/,T2,A)") &
1336 15 : "X-RAY DIFFRACTION SPECTRUM"
1337 15 : IF (unit_nr /= output_unit) THEN
1338 : WRITE (UNIT=output_unit, FMT="(/,T3,A,/,/,T3,A,/)") &
1339 14 : "The coherent X-ray diffraction spectrum is written to the file:", &
1340 28 : TRIM(filename)
1341 : END IF
1342 : END IF
1343 : CALL xray_diffraction_spectrum(qs_env=qs_env, &
1344 : unit_number=unit_nr, &
1345 30 : q_max=q_max)
1346 : CALL cp_print_key_finished_output(unit_nr=unit_nr, &
1347 : logger=logger, &
1348 : basis_section=input, &
1349 30 : print_key_path="DFT%PRINT%XRAY_DIFFRACTION_SPECTRUM")
1350 : END IF
1351 :
1352 10053 : CALL timestop(handle)
1353 :
1354 10053 : END SUBROUTINE qs_scf_post_xray
1355 :
1356 : ! **************************************************************************************************
1357 : !> \brief Computes and prints Electric Field Gradient
1358 : !> \param input ...
1359 : !> \param logger ...
1360 : !> \param qs_env the qs_env in which the qs_env lives
1361 : ! **************************************************************************************************
1362 10053 : SUBROUTINE qs_scf_post_efg(input, logger, qs_env)
1363 : TYPE(section_vals_type), POINTER :: input
1364 : TYPE(cp_logger_type), POINTER :: logger
1365 : TYPE(qs_environment_type), POINTER :: qs_env
1366 :
1367 : CHARACTER(len=*), PARAMETER :: routineN = 'qs_scf_post_efg'
1368 :
1369 : INTEGER :: handle
1370 : TYPE(section_vals_type), POINTER :: print_key
1371 :
1372 10053 : CALL timeset(routineN, handle)
1373 :
1374 : print_key => section_vals_get_subs_vals(section_vals=input, &
1375 10053 : subsection_name="DFT%PRINT%ELECTRIC_FIELD_GRADIENT")
1376 10053 : IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), &
1377 : cp_p_file)) THEN
1378 30 : CALL qs_efg_calc(qs_env=qs_env)
1379 : END IF
1380 :
1381 10053 : CALL timestop(handle)
1382 :
1383 10053 : END SUBROUTINE qs_scf_post_efg
1384 :
1385 : ! **************************************************************************************************
1386 : !> \brief Computes the Electron Transfer Coupling matrix element
1387 : !> \param input ...
1388 : !> \param qs_env the qs_env in which the qs_env lives
1389 : !> \param dft_control ...
1390 : ! **************************************************************************************************
1391 20106 : SUBROUTINE qs_scf_post_et(input, qs_env, dft_control)
1392 : TYPE(section_vals_type), POINTER :: input
1393 : TYPE(qs_environment_type), POINTER :: qs_env
1394 : TYPE(dft_control_type), POINTER :: dft_control
1395 :
1396 : CHARACTER(len=*), PARAMETER :: routineN = 'qs_scf_post_et'
1397 :
1398 : INTEGER :: handle, ispin
1399 : LOGICAL :: do_et
1400 10053 : TYPE(cp_fm_type), DIMENSION(:), POINTER :: my_mos
1401 : TYPE(section_vals_type), POINTER :: et_section
1402 :
1403 10053 : CALL timeset(routineN, handle)
1404 :
1405 : do_et = .FALSE.
1406 10053 : et_section => section_vals_get_subs_vals(input, "PROPERTIES%ET_COUPLING")
1407 10053 : CALL section_vals_get(et_section, explicit=do_et)
1408 10053 : IF (do_et) THEN
1409 10 : IF (qs_env%et_coupling%first_run) THEN
1410 10 : NULLIFY (my_mos)
1411 50 : ALLOCATE (my_mos(dft_control%nspins))
1412 50 : ALLOCATE (qs_env%et_coupling%et_mo_coeff(dft_control%nspins))
1413 30 : DO ispin = 1, dft_control%nspins
1414 : CALL cp_fm_create(matrix=my_mos(ispin), &
1415 : matrix_struct=qs_env%mos(ispin)%mo_coeff%matrix_struct, &
1416 20 : name="FIRST_RUN_COEFF"//TRIM(ADJUSTL(cp_to_string(ispin)))//"MATRIX")
1417 : CALL cp_fm_to_fm(qs_env%mos(ispin)%mo_coeff, &
1418 30 : my_mos(ispin))
1419 : END DO
1420 10 : CALL set_et_coupling_type(qs_env%et_coupling, et_mo_coeff=my_mos)
1421 10 : DEALLOCATE (my_mos)
1422 : END IF
1423 : END IF
1424 :
1425 10053 : CALL timestop(handle)
1426 :
1427 10053 : END SUBROUTINE qs_scf_post_et
1428 :
1429 : ! **************************************************************************************************
1430 : !> \brief compute the electron localization function
1431 : !>
1432 : !> \param input ...
1433 : !> \param logger ...
1434 : !> \param qs_env ...
1435 : !> \par History
1436 : !> 2012-07 Created [MI]
1437 : ! **************************************************************************************************
1438 10053 : SUBROUTINE qs_scf_post_elf(input, logger, qs_env)
1439 : TYPE(section_vals_type), POINTER :: input
1440 : TYPE(cp_logger_type), POINTER :: logger
1441 : TYPE(qs_environment_type), POINTER :: qs_env
1442 :
1443 : CHARACTER(len=*), PARAMETER :: routineN = 'qs_scf_post_elf'
1444 :
1445 : CHARACTER(LEN=default_path_length) :: filename, mpi_filename, my_pos_cube, &
1446 : title
1447 : INTEGER :: handle, ispin, output_unit, unit_nr
1448 : LOGICAL :: append_cube, gapw, mpi_io
1449 : REAL(dp) :: rho_cutoff
1450 : TYPE(dft_control_type), POINTER :: dft_control
1451 : TYPE(particle_list_type), POINTER :: particles
1452 : TYPE(pw_env_type), POINTER :: pw_env
1453 10053 : TYPE(pw_pool_p_type), DIMENSION(:), POINTER :: pw_pools
1454 : TYPE(pw_pool_type), POINTER :: auxbas_pw_pool
1455 10053 : TYPE(pw_r3d_rs_type), ALLOCATABLE, DIMENSION(:) :: elf_r
1456 : TYPE(qs_subsys_type), POINTER :: subsys
1457 : TYPE(section_vals_type), POINTER :: elf_section
1458 :
1459 10053 : CALL timeset(routineN, handle)
1460 10053 : output_unit = cp_logger_get_default_io_unit(logger)
1461 :
1462 10053 : elf_section => section_vals_get_subs_vals(input, "DFT%PRINT%ELF_CUBE")
1463 10053 : IF (BTEST(cp_print_key_should_output(logger%iter_info, input, &
1464 : "DFT%PRINT%ELF_CUBE"), cp_p_file)) THEN
1465 :
1466 80 : NULLIFY (dft_control, pw_env, auxbas_pw_pool, pw_pools, particles, subsys)
1467 80 : CALL get_qs_env(qs_env, dft_control=dft_control, pw_env=pw_env, subsys=subsys)
1468 80 : CALL qs_subsys_get(subsys, particles=particles)
1469 :
1470 80 : gapw = dft_control%qs_control%gapw
1471 80 : IF (.NOT. gapw) THEN
1472 : ! allocate
1473 322 : ALLOCATE (elf_r(dft_control%nspins))
1474 : CALL pw_env_get(pw_env, auxbas_pw_pool=auxbas_pw_pool, &
1475 80 : pw_pools=pw_pools)
1476 162 : DO ispin = 1, dft_control%nspins
1477 82 : CALL auxbas_pw_pool%create_pw(elf_r(ispin))
1478 162 : CALL pw_zero(elf_r(ispin))
1479 : END DO
1480 :
1481 80 : IF (output_unit > 0) THEN
1482 : WRITE (UNIT=output_unit, FMT="(/,T15,A,/)") &
1483 40 : " ----- ELF is computed on the real space grid -----"
1484 : END IF
1485 80 : rho_cutoff = section_get_rval(elf_section, "density_cutoff")
1486 80 : CALL qs_elf_calc(qs_env, elf_r, rho_cutoff)
1487 :
1488 : ! write ELF into cube file
1489 80 : append_cube = section_get_lval(elf_section, "APPEND")
1490 80 : my_pos_cube = "REWIND"
1491 80 : IF (append_cube) THEN
1492 0 : my_pos_cube = "APPEND"
1493 : END IF
1494 :
1495 162 : DO ispin = 1, dft_control%nspins
1496 82 : WRITE (filename, '(a5,I1.1)') "ELF_S", ispin
1497 82 : WRITE (title, *) "ELF spin ", ispin
1498 82 : mpi_io = .TRUE.
1499 : unit_nr = cp_print_key_unit_nr(logger, input, "DFT%PRINT%ELF_CUBE", extension=".cube", &
1500 : middle_name=TRIM(filename), file_position=my_pos_cube, log_filename=.FALSE., &
1501 82 : mpi_io=mpi_io, fout=mpi_filename)
1502 82 : IF (output_unit > 0) THEN
1503 41 : IF (.NOT. mpi_io) THEN
1504 0 : INQUIRE (UNIT=unit_nr, NAME=filename)
1505 : ELSE
1506 41 : filename = mpi_filename
1507 : END IF
1508 : WRITE (UNIT=output_unit, FMT="(/,T2,A,/,/,T2,A)") &
1509 41 : "ELF is written in cube file format to the file:", &
1510 82 : TRIM(filename)
1511 : END IF
1512 :
1513 : CALL cp_pw_to_cube(elf_r(ispin), unit_nr, title, particles=particles, &
1514 82 : stride=section_get_ivals(elf_section, "STRIDE"), mpi_io=mpi_io)
1515 82 : CALL cp_print_key_finished_output(unit_nr, logger, input, "DFT%PRINT%ELF_CUBE", mpi_io=mpi_io)
1516 :
1517 162 : CALL auxbas_pw_pool%give_back_pw(elf_r(ispin))
1518 : END DO
1519 :
1520 : ! deallocate
1521 80 : DEALLOCATE (elf_r)
1522 :
1523 : ELSE
1524 : ! not implemented
1525 0 : CPWARN("ELF not implemented for GAPW calculations!")
1526 : END IF
1527 :
1528 : END IF ! print key
1529 :
1530 10053 : CALL timestop(handle)
1531 :
1532 20106 : END SUBROUTINE qs_scf_post_elf
1533 :
1534 : ! **************************************************************************************************
1535 : !> \brief computes the condition number of the overlap matrix and
1536 : !> prints the value of the total energy. This is needed
1537 : !> for BASIS_MOLOPT optimizations
1538 : !> \param input ...
1539 : !> \param logger ...
1540 : !> \param qs_env the qs_env in which the qs_env lives
1541 : !> \par History
1542 : !> 2007-07 Created [Joost VandeVondele]
1543 : ! **************************************************************************************************
1544 10053 : SUBROUTINE qs_scf_post_molopt(input, logger, qs_env)
1545 : TYPE(section_vals_type), POINTER :: input
1546 : TYPE(cp_logger_type), POINTER :: logger
1547 : TYPE(qs_environment_type), POINTER :: qs_env
1548 :
1549 : CHARACTER(len=*), PARAMETER :: routineN = 'qs_scf_post_molopt'
1550 :
1551 : INTEGER :: handle, nao, unit_nr
1552 : REAL(KIND=dp) :: S_cond_number
1553 10053 : REAL(KIND=dp), ALLOCATABLE, DIMENSION(:) :: eigenvalues
1554 : TYPE(cp_fm_struct_type), POINTER :: ao_ao_fmstruct
1555 : TYPE(cp_fm_type) :: fm_s, fm_work
1556 : TYPE(cp_fm_type), POINTER :: mo_coeff
1557 10053 : TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: matrix_s
1558 10053 : TYPE(mo_set_type), DIMENSION(:), POINTER :: mos
1559 : TYPE(qs_energy_type), POINTER :: energy
1560 : TYPE(section_vals_type), POINTER :: print_key
1561 :
1562 10053 : CALL timeset(routineN, handle)
1563 :
1564 : print_key => section_vals_get_subs_vals(section_vals=input, &
1565 10053 : subsection_name="DFT%PRINT%BASIS_MOLOPT_QUANTITIES")
1566 10053 : IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), &
1567 : cp_p_file)) THEN
1568 :
1569 28 : CALL get_qs_env(qs_env, energy=energy, matrix_s=matrix_s, mos=mos)
1570 :
1571 : ! set up the two needed full matrices, using mo_coeff as a template
1572 28 : CALL get_mo_set(mo_set=mos(1), mo_coeff=mo_coeff, nao=nao)
1573 : CALL cp_fm_struct_create(fmstruct=ao_ao_fmstruct, &
1574 : nrow_global=nao, ncol_global=nao, &
1575 28 : template_fmstruct=mo_coeff%matrix_struct)
1576 : CALL cp_fm_create(fm_s, matrix_struct=ao_ao_fmstruct, &
1577 28 : name="fm_s")
1578 : CALL cp_fm_create(fm_work, matrix_struct=ao_ao_fmstruct, &
1579 28 : name="fm_work")
1580 28 : CALL cp_fm_struct_release(ao_ao_fmstruct)
1581 84 : ALLOCATE (eigenvalues(nao))
1582 :
1583 28 : CALL copy_dbcsr_to_fm(matrix_s(1)%matrix, fm_s)
1584 28 : CALL choose_eigv_solver(fm_s, fm_work, eigenvalues)
1585 :
1586 28 : CALL cp_fm_release(fm_s)
1587 28 : CALL cp_fm_release(fm_work)
1588 :
1589 1048 : S_cond_number = MAXVAL(ABS(eigenvalues))/MAX(MINVAL(ABS(eigenvalues)), EPSILON(0.0_dp))
1590 :
1591 : unit_nr = cp_print_key_unit_nr(logger, input, "DFT%PRINT%BASIS_MOLOPT_QUANTITIES", &
1592 28 : extension=".molopt")
1593 :
1594 28 : IF (unit_nr > 0) THEN
1595 : ! please keep this format fixed, needs to be grepable for molopt
1596 : ! optimizations
1597 14 : WRITE (unit_nr, '(T2,A28,2A25)') "", "Tot. Ener.", "S Cond. Numb."
1598 14 : WRITE (unit_nr, '(T2,A28,2E25.17)') "BASIS_MOLOPT_QUANTITIES", energy%total, S_cond_number
1599 : END IF
1600 :
1601 : CALL cp_print_key_finished_output(unit_nr, logger, input, &
1602 84 : "DFT%PRINT%BASIS_MOLOPT_QUANTITIES")
1603 :
1604 : END IF
1605 :
1606 10053 : CALL timestop(handle)
1607 :
1608 20106 : END SUBROUTINE qs_scf_post_molopt
1609 :
1610 : ! **************************************************************************************************
1611 : !> \brief Dumps EPR
1612 : !> \param input ...
1613 : !> \param logger ...
1614 : !> \param qs_env the qs_env in which the qs_env lives
1615 : ! **************************************************************************************************
1616 10053 : SUBROUTINE qs_scf_post_epr(input, logger, qs_env)
1617 : TYPE(section_vals_type), POINTER :: input
1618 : TYPE(cp_logger_type), POINTER :: logger
1619 : TYPE(qs_environment_type), POINTER :: qs_env
1620 :
1621 : CHARACTER(len=*), PARAMETER :: routineN = 'qs_scf_post_epr'
1622 :
1623 : INTEGER :: handle
1624 : TYPE(section_vals_type), POINTER :: print_key
1625 :
1626 10053 : CALL timeset(routineN, handle)
1627 :
1628 : print_key => section_vals_get_subs_vals(section_vals=input, &
1629 10053 : subsection_name="DFT%PRINT%HYPERFINE_COUPLING_TENSOR")
1630 10053 : IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), &
1631 : cp_p_file)) THEN
1632 30 : CALL qs_epr_hyp_calc(qs_env=qs_env)
1633 : END IF
1634 :
1635 10053 : CALL timestop(handle)
1636 :
1637 10053 : END SUBROUTINE qs_scf_post_epr
1638 :
1639 : ! **************************************************************************************************
1640 : !> \brief Interface routine to trigger writing of results available from normal
1641 : !> SCF. Can write MO-dependent and MO free results (needed for call from
1642 : !> the linear scaling code)
1643 : !> \param qs_env the qs_env in which the qs_env lives
1644 : !> \param scf_env ...
1645 : ! **************************************************************************************************
1646 10053 : SUBROUTINE write_available_results(qs_env, scf_env)
1647 : TYPE(qs_environment_type), POINTER :: qs_env
1648 : TYPE(qs_scf_env_type), OPTIONAL, POINTER :: scf_env
1649 :
1650 : CHARACTER(len=*), PARAMETER :: routineN = 'write_available_results'
1651 :
1652 : INTEGER :: handle
1653 :
1654 10053 : CALL timeset(routineN, handle)
1655 :
1656 : ! those properties that require MOs (not suitable density matrix based methods)
1657 10053 : CALL write_mo_dependent_results(qs_env, scf_env)
1658 :
1659 : ! those that depend only on the density matrix, they should be linear scaling in their implementation
1660 10053 : CALL write_mo_free_results(qs_env)
1661 :
1662 10053 : CALL timestop(handle)
1663 :
1664 10053 : END SUBROUTINE write_available_results
1665 :
1666 : ! **************************************************************************************************
1667 : !> \brief Write QS results available if MO's are present (if switched on through the print_keys)
1668 : !> Writes only MO dependent results. Split is necessary as ls_scf does not
1669 : !> provide MO's
1670 : !> \param qs_env the qs_env in which the qs_env lives
1671 : !> \param scf_env ...
1672 : ! **************************************************************************************************
1673 10365 : SUBROUTINE write_mo_dependent_results(qs_env, scf_env)
1674 : TYPE(qs_environment_type), POINTER :: qs_env
1675 : TYPE(qs_scf_env_type), OPTIONAL, POINTER :: scf_env
1676 :
1677 : CHARACTER(len=*), PARAMETER :: routineN = 'write_mo_dependent_results'
1678 :
1679 : INTEGER :: handle, homo, ispin, nmo, output_unit
1680 : LOGICAL :: all_equal, do_kpoints, explicit
1681 : REAL(KIND=dp) :: maxocc, s_square, s_square_ideal, &
1682 : total_abs_spin_dens, total_spin_dens
1683 10365 : REAL(KIND=dp), DIMENSION(:), POINTER :: mo_eigenvalues, occupation_numbers
1684 : TYPE(admm_type), POINTER :: admm_env
1685 10365 : TYPE(atomic_kind_type), DIMENSION(:), POINTER :: atomic_kind_set
1686 : TYPE(cell_type), POINTER :: cell
1687 : TYPE(cp_fm_type), POINTER :: mo_coeff
1688 : TYPE(cp_logger_type), POINTER :: logger
1689 10365 : TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: ks_rmpv, matrix_s
1690 : TYPE(dbcsr_type), POINTER :: mo_coeff_deriv
1691 : TYPE(dft_control_type), POINTER :: dft_control
1692 10365 : TYPE(mo_set_type), DIMENSION(:), POINTER :: mos
1693 10365 : TYPE(molecule_type), POINTER :: molecule_set(:)
1694 : TYPE(particle_list_type), POINTER :: particles
1695 10365 : TYPE(particle_type), DIMENSION(:), POINTER :: particle_set
1696 : TYPE(pw_env_type), POINTER :: pw_env
1697 10365 : TYPE(pw_pool_p_type), DIMENSION(:), POINTER :: pw_pools
1698 : TYPE(pw_pool_type), POINTER :: auxbas_pw_pool
1699 : TYPE(pw_r3d_rs_type) :: wf_r
1700 10365 : TYPE(pw_r3d_rs_type), DIMENSION(:), POINTER :: rho_r
1701 : TYPE(qs_energy_type), POINTER :: energy
1702 10365 : TYPE(qs_kind_type), DIMENSION(:), POINTER :: qs_kind_set
1703 : TYPE(qs_rho_type), POINTER :: rho
1704 : TYPE(qs_subsys_type), POINTER :: subsys
1705 : TYPE(scf_control_type), POINTER :: scf_control
1706 : TYPE(section_vals_type), POINTER :: dft_section, input, sprint_section, &
1707 : trexio_section
1708 :
1709 : ! TYPE(kpoint_type), POINTER :: kpoints
1710 :
1711 10365 : CALL timeset(routineN, handle)
1712 :
1713 10365 : NULLIFY (cell, dft_control, pw_env, auxbas_pw_pool, pw_pools, mo_coeff, &
1714 10365 : mo_coeff_deriv, mo_eigenvalues, mos, atomic_kind_set, qs_kind_set, &
1715 10365 : particle_set, rho, ks_rmpv, matrix_s, scf_control, dft_section, &
1716 10365 : molecule_set, input, particles, subsys, rho_r)
1717 :
1718 10365 : logger => cp_get_default_logger()
1719 10365 : output_unit = cp_logger_get_default_io_unit(logger)
1720 :
1721 10365 : CPASSERT(ASSOCIATED(qs_env))
1722 : CALL get_qs_env(qs_env, &
1723 : dft_control=dft_control, &
1724 : molecule_set=molecule_set, &
1725 : atomic_kind_set=atomic_kind_set, &
1726 : particle_set=particle_set, &
1727 : qs_kind_set=qs_kind_set, &
1728 : admm_env=admm_env, &
1729 : scf_control=scf_control, &
1730 : input=input, &
1731 : cell=cell, &
1732 10365 : subsys=subsys)
1733 10365 : CALL qs_subsys_get(subsys, particles=particles)
1734 10365 : CALL get_qs_env(qs_env, rho=rho)
1735 10365 : CALL qs_rho_get(rho, rho_r=rho_r)
1736 :
1737 : ! k points
1738 10365 : CALL get_qs_env(qs_env, do_kpoints=do_kpoints)
1739 :
1740 : ! Write last MO information to output file if requested
1741 10365 : dft_section => section_vals_get_subs_vals(input, "DFT")
1742 10365 : IF (.NOT. qs_env%run_rtp) THEN
1743 10053 : CALL qs_scf_write_mos(qs_env, scf_env, final_mos=.TRUE.)
1744 10053 : trexio_section => section_vals_get_subs_vals(dft_section, "PRINT%TREXIO")
1745 10053 : CALL section_vals_get(trexio_section, explicit=explicit)
1746 10053 : IF (explicit) THEN
1747 8 : CALL write_trexio(qs_env, trexio_section)
1748 : END IF
1749 10053 : IF (.NOT. do_kpoints) THEN
1750 9833 : CALL get_qs_env(qs_env, mos=mos, matrix_ks=ks_rmpv)
1751 9833 : CALL write_dm_binary_restart(mos, dft_section, ks_rmpv)
1752 9833 : sprint_section => section_vals_get_subs_vals(dft_section, "PRINT%MO_MOLDEN")
1753 9833 : CALL write_mos_molden(mos, qs_kind_set, particle_set, sprint_section)
1754 : ! Write Chargemol .wfx
1755 9833 : IF (BTEST(cp_print_key_should_output(logger%iter_info, &
1756 : dft_section, "PRINT%CHARGEMOL"), &
1757 : cp_p_file)) THEN
1758 2 : CALL write_wfx(qs_env, dft_section)
1759 : END IF
1760 : END IF
1761 :
1762 : ! DOS printout after the SCF cycle is completed
1763 10053 : IF (BTEST(cp_print_key_should_output(logger%iter_info, dft_section, "PRINT%DOS") &
1764 : , cp_p_file)) THEN
1765 42 : IF (do_kpoints) THEN
1766 2 : CALL calculate_dos_kp(qs_env, dft_section)
1767 : ELSE
1768 40 : CALL get_qs_env(qs_env, mos=mos)
1769 40 : CALL calculate_dos(mos, dft_section)
1770 : END IF
1771 : END IF
1772 :
1773 : ! Print the projected density of states (pDOS) for each atomic kind
1774 10053 : IF (BTEST(cp_print_key_should_output(logger%iter_info, dft_section, "PRINT%PDOS"), &
1775 : cp_p_file)) THEN
1776 48 : IF (do_kpoints) THEN
1777 0 : CPWARN("Projected density of states (pDOS) is not implemented for k points")
1778 : ELSE
1779 : CALL get_qs_env(qs_env, &
1780 : mos=mos, &
1781 48 : matrix_ks=ks_rmpv)
1782 96 : DO ispin = 1, dft_control%nspins
1783 : ! With ADMM, we have to modify the Kohn-Sham matrix
1784 48 : IF (dft_control%do_admm) THEN
1785 0 : CALL admm_correct_for_eigenvalues(ispin, admm_env, ks_rmpv(ispin)%matrix)
1786 : END IF
1787 48 : IF (PRESENT(scf_env)) THEN
1788 48 : IF (scf_env%method == ot_method_nr) THEN
1789 : CALL get_mo_set(mo_set=mos(ispin), mo_coeff=mo_coeff, &
1790 8 : eigenvalues=mo_eigenvalues)
1791 8 : IF (ASSOCIATED(qs_env%mo_derivs)) THEN
1792 8 : mo_coeff_deriv => qs_env%mo_derivs(ispin)%matrix
1793 : ELSE
1794 0 : mo_coeff_deriv => NULL()
1795 : END IF
1796 : CALL calculate_subspace_eigenvalues(mo_coeff, ks_rmpv(ispin)%matrix, mo_eigenvalues, &
1797 : do_rotation=.TRUE., &
1798 8 : co_rotate_dbcsr=mo_coeff_deriv)
1799 8 : CALL set_mo_occupation(mo_set=mos(ispin))
1800 : END IF
1801 : END IF
1802 48 : IF (dft_control%nspins == 2) THEN
1803 : CALL calculate_projected_dos(mos(ispin), atomic_kind_set, &
1804 0 : qs_kind_set, particle_set, qs_env, dft_section, ispin=ispin)
1805 : ELSE
1806 : CALL calculate_projected_dos(mos(ispin), atomic_kind_set, &
1807 48 : qs_kind_set, particle_set, qs_env, dft_section)
1808 : END IF
1809 : ! With ADMM, we have to undo the modification of the Kohn-Sham matrix
1810 96 : IF (dft_control%do_admm) THEN
1811 0 : CALL admm_uncorrect_for_eigenvalues(ispin, admm_env, ks_rmpv(ispin)%matrix)
1812 : END IF
1813 : END DO
1814 : END IF
1815 : END IF
1816 : END IF
1817 :
1818 : ! Integrated absolute spin density and spin contamination ***
1819 10365 : IF (dft_control%nspins == 2) THEN
1820 1982 : CALL get_qs_env(qs_env, mos=mos)
1821 1982 : CALL get_qs_env(qs_env=qs_env, pw_env=pw_env)
1822 : CALL pw_env_get(pw_env, auxbas_pw_pool=auxbas_pw_pool, &
1823 1982 : pw_pools=pw_pools)
1824 1982 : CALL auxbas_pw_pool%create_pw(wf_r)
1825 1982 : CALL pw_copy(rho_r(1), wf_r)
1826 1982 : CALL pw_axpy(rho_r(2), wf_r, alpha=-1._dp)
1827 1982 : total_spin_dens = pw_integrate_function(wf_r)
1828 1982 : IF (output_unit > 0) WRITE (UNIT=output_unit, FMT='(/,(T3,A,T61,F20.10))') &
1829 1014 : "Integrated spin density: ", total_spin_dens
1830 1982 : total_abs_spin_dens = pw_integrate_function(wf_r, oprt="ABS")
1831 1982 : IF (output_unit > 0) WRITE (UNIT=output_unit, FMT='((T3,A,T61,F20.10))') &
1832 1014 : "Integrated absolute spin density: ", total_abs_spin_dens
1833 1982 : CALL auxbas_pw_pool%give_back_pw(wf_r)
1834 : !
1835 : ! XXX Fix Me XXX
1836 : ! should be extended to the case where added MOs are present
1837 : ! should be extended to the k-point case
1838 : !
1839 1982 : IF (do_kpoints) THEN
1840 30 : CPWARN("Spin contamination estimate not implemented for k-points.")
1841 : ELSE
1842 1952 : all_equal = .TRUE.
1843 5856 : DO ispin = 1, dft_control%nspins
1844 : CALL get_mo_set(mo_set=mos(ispin), &
1845 : occupation_numbers=occupation_numbers, &
1846 : homo=homo, &
1847 : nmo=nmo, &
1848 3904 : maxocc=maxocc)
1849 5856 : IF (nmo > 0) THEN
1850 : all_equal = all_equal .AND. &
1851 : (ALL(occupation_numbers(1:homo) == maxocc) .AND. &
1852 22302 : ALL(occupation_numbers(homo + 1:nmo) == 0.0_dp))
1853 : END IF
1854 : END DO
1855 1952 : IF (.NOT. all_equal) THEN
1856 106 : IF (output_unit > 0) WRITE (UNIT=output_unit, FMT="(T3,A)") &
1857 53 : "WARNING: S**2 computation does not yet treat fractional occupied orbitals"
1858 : ELSE
1859 : CALL get_qs_env(qs_env=qs_env, &
1860 : matrix_s=matrix_s, &
1861 1846 : energy=energy)
1862 : CALL compute_s_square(mos=mos, matrix_s=matrix_s, s_square=s_square, &
1863 1846 : s_square_ideal=s_square_ideal)
1864 1846 : IF (output_unit > 0) WRITE (UNIT=output_unit, FMT='(T3,A,T51,2F15.6)') &
1865 946 : "Ideal and single determinant S**2 : ", s_square_ideal, s_square
1866 1846 : energy%s_square = s_square
1867 : END IF
1868 : END IF
1869 : END IF
1870 :
1871 10365 : CALL timestop(handle)
1872 :
1873 10365 : END SUBROUTINE write_mo_dependent_results
1874 :
1875 : ! **************************************************************************************************
1876 : !> \brief Write QS results always available (if switched on through the print_keys)
1877 : !> Can be called from ls_scf
1878 : !> \param qs_env the qs_env in which the qs_env lives
1879 : ! **************************************************************************************************
1880 11299 : SUBROUTINE write_mo_free_results(qs_env)
1881 : TYPE(qs_environment_type), POINTER :: qs_env
1882 :
1883 : CHARACTER(len=*), PARAMETER :: routineN = 'write_mo_free_results'
1884 : CHARACTER(len=1), DIMENSION(3), PARAMETER :: cdir = ["x", "y", "z"]
1885 :
1886 : CHARACTER(LEN=2) :: element_symbol
1887 : CHARACTER(LEN=default_path_length) :: filename, mpi_filename, my_pos_cube, &
1888 : my_pos_voro
1889 : CHARACTER(LEN=default_string_length) :: name, print_density
1890 : INTEGER :: after, handle, i, iat, iatom, id, ikind, img, iso, ispin, iw, l, n_rep_hf, nat, &
1891 : natom, nd(3), ngto, niso, nkind, np, nr, output_unit, print_level, should_print_bqb, &
1892 : should_print_voro, unit_nr, unit_nr_voro
1893 : LOGICAL :: append_cube, append_voro, do_hfx, do_kpoints, mpi_io, omit_headers, print_it, &
1894 : rho_r_valid, voro_print_txt, write_ks, write_xc, xrd_interface
1895 : REAL(KIND=dp) :: norm_factor, q_max, rho_hard, rho_soft, &
1896 : rho_total, rho_total_rspace, udvol, &
1897 : volume, zeff
1898 11299 : REAL(KIND=dp), ALLOCATABLE, DIMENSION(:) :: zcharge
1899 11299 : REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :) :: bfun
1900 11299 : REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :, :) :: aedens, ccdens, ppdens
1901 : REAL(KIND=dp), DIMENSION(3) :: dr
1902 11299 : REAL(KIND=dp), DIMENSION(:), POINTER :: my_Q0
1903 11299 : TYPE(atomic_kind_type), DIMENSION(:), POINTER :: atomic_kind_set
1904 : TYPE(atomic_kind_type), POINTER :: atomic_kind
1905 : TYPE(cell_type), POINTER :: cell
1906 : TYPE(cp_logger_type), POINTER :: logger
1907 11299 : TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: matrix_hr
1908 11299 : TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER :: ks_rmpv, matrix_vxc, rho_ao
1909 : TYPE(dft_control_type), POINTER :: dft_control
1910 : TYPE(grid_atom_type), POINTER :: grid_atom
1911 : TYPE(iao_env_type) :: iao_env
1912 : TYPE(mp_para_env_type), POINTER :: para_env
1913 : TYPE(particle_list_type), POINTER :: particles
1914 11299 : TYPE(particle_type), DIMENSION(:), POINTER :: particle_set
1915 : TYPE(pw_c1d_gs_type) :: aux_g, rho_elec_gspace
1916 : TYPE(pw_c1d_gs_type), POINTER :: rho0_s_gs, rho_core, rhoz_cneo_s_gs
1917 : TYPE(pw_env_type), POINTER :: pw_env
1918 11299 : TYPE(pw_pool_p_type), DIMENSION(:), POINTER :: pw_pools
1919 : TYPE(pw_pool_type), POINTER :: auxbas_pw_pool
1920 : TYPE(pw_r3d_rs_type) :: aux_r, rho_elec_rspace, wf_r
1921 11299 : TYPE(pw_r3d_rs_type), DIMENSION(:), POINTER :: rho_r
1922 : TYPE(pw_r3d_rs_type), POINTER :: mb_rho, v_hartree_rspace, vee
1923 11299 : TYPE(qs_kind_type), DIMENSION(:), POINTER :: qs_kind_set
1924 : TYPE(qs_kind_type), POINTER :: qs_kind
1925 : TYPE(qs_rho_type), POINTER :: rho
1926 : TYPE(qs_subsys_type), POINTER :: subsys
1927 : TYPE(rho0_mpole_type), POINTER :: rho0_mpole
1928 11299 : TYPE(rho_atom_type), DIMENSION(:), POINTER :: rho_atom_set
1929 : TYPE(rho_atom_type), POINTER :: rho_atom
1930 : TYPE(section_vals_type), POINTER :: dft_section, hfx_section, input, &
1931 : print_key, print_key_bqb, &
1932 : print_key_voro, xc_section
1933 :
1934 11299 : CALL timeset(routineN, handle)
1935 11299 : NULLIFY (cell, dft_control, pw_env, auxbas_pw_pool, pw_pools, hfx_section, &
1936 11299 : atomic_kind_set, qs_kind_set, particle_set, rho, ks_rmpv, rho_ao, rho_r, &
1937 11299 : dft_section, xc_section, input, particles, subsys, matrix_vxc, v_hartree_rspace, &
1938 11299 : vee)
1939 :
1940 11299 : logger => cp_get_default_logger()
1941 11299 : output_unit = cp_logger_get_default_io_unit(logger)
1942 :
1943 11299 : CPASSERT(ASSOCIATED(qs_env))
1944 : CALL get_qs_env(qs_env, &
1945 : atomic_kind_set=atomic_kind_set, &
1946 : qs_kind_set=qs_kind_set, &
1947 : particle_set=particle_set, &
1948 : cell=cell, &
1949 : para_env=para_env, &
1950 : dft_control=dft_control, &
1951 : input=input, &
1952 : do_kpoints=do_kpoints, &
1953 11299 : subsys=subsys)
1954 11299 : dft_section => section_vals_get_subs_vals(input, "DFT")
1955 11299 : CALL qs_subsys_get(subsys, particles=particles)
1956 :
1957 11299 : CALL get_qs_env(qs_env, rho=rho)
1958 11299 : CALL qs_rho_get(rho, rho_r=rho_r)
1959 :
1960 11299 : CALL get_qs_env(qs_env, nkind=nkind, natom=natom)
1961 33897 : ALLOCATE (zcharge(natom))
1962 31651 : DO ikind = 1, nkind
1963 20352 : CALL get_qs_kind(qs_kind_set(ikind), zeff=zeff)
1964 20352 : CALL get_atomic_kind(atomic_kind_set(ikind), natom=nat)
1965 74842 : DO iatom = 1, nat
1966 43191 : iat = atomic_kind_set(ikind)%atom_list(iatom)
1967 63543 : zcharge(iat) = zeff
1968 : END DO
1969 : END DO
1970 :
1971 : ! Print the total density (electronic + core charge)
1972 11299 : IF (BTEST(cp_print_key_should_output(logger%iter_info, input, &
1973 : "DFT%PRINT%TOT_DENSITY_CUBE"), cp_p_file)) THEN
1974 82 : NULLIFY (rho_core, rho0_s_gs, rhoz_cneo_s_gs)
1975 82 : append_cube = section_get_lval(input, "DFT%PRINT%TOT_DENSITY_CUBE%APPEND")
1976 82 : my_pos_cube = "REWIND"
1977 82 : IF (append_cube) THEN
1978 0 : my_pos_cube = "APPEND"
1979 : END IF
1980 :
1981 : CALL get_qs_env(qs_env=qs_env, pw_env=pw_env, rho_core=rho_core, &
1982 82 : rho0_s_gs=rho0_s_gs, rhoz_cneo_s_gs=rhoz_cneo_s_gs)
1983 : CALL pw_env_get(pw_env, auxbas_pw_pool=auxbas_pw_pool, &
1984 82 : pw_pools=pw_pools)
1985 82 : CALL auxbas_pw_pool%create_pw(wf_r)
1986 82 : IF (dft_control%qs_control%gapw) THEN
1987 0 : IF (dft_control%qs_control%gapw_control%nopaw_as_gpw) THEN
1988 0 : CALL pw_axpy(rho_core, rho0_s_gs)
1989 0 : IF (ASSOCIATED(rhoz_cneo_s_gs)) THEN
1990 0 : CALL pw_axpy(rhoz_cneo_s_gs, rho0_s_gs)
1991 : END IF
1992 0 : CALL pw_transfer(rho0_s_gs, wf_r)
1993 0 : CALL pw_axpy(rho_core, rho0_s_gs, -1.0_dp)
1994 0 : IF (ASSOCIATED(rhoz_cneo_s_gs)) THEN
1995 0 : CALL pw_axpy(rhoz_cneo_s_gs, rho0_s_gs, -1.0_dp)
1996 : END IF
1997 : ELSE
1998 0 : IF (ASSOCIATED(rhoz_cneo_s_gs)) THEN
1999 0 : CALL pw_axpy(rhoz_cneo_s_gs, rho0_s_gs)
2000 : END IF
2001 0 : CALL pw_transfer(rho0_s_gs, wf_r)
2002 0 : IF (ASSOCIATED(rhoz_cneo_s_gs)) THEN
2003 0 : CALL pw_axpy(rhoz_cneo_s_gs, rho0_s_gs, -1.0_dp)
2004 : END IF
2005 : END IF
2006 : ELSE
2007 82 : CALL pw_transfer(rho_core, wf_r)
2008 : END IF
2009 164 : DO ispin = 1, dft_control%nspins
2010 164 : CALL pw_axpy(rho_r(ispin), wf_r)
2011 : END DO
2012 82 : filename = "TOTAL_DENSITY"
2013 82 : mpi_io = .TRUE.
2014 : unit_nr = cp_print_key_unit_nr(logger, input, "DFT%PRINT%TOT_DENSITY_CUBE", &
2015 : extension=".cube", middle_name=TRIM(filename), file_position=my_pos_cube, &
2016 82 : log_filename=.FALSE., mpi_io=mpi_io)
2017 : CALL cp_pw_to_cube(wf_r, unit_nr, "TOTAL DENSITY", &
2018 : particles=particles, zeff=zcharge, &
2019 82 : stride=section_get_ivals(dft_section, "PRINT%TOT_DENSITY_CUBE%STRIDE"), mpi_io=mpi_io)
2020 : CALL cp_print_key_finished_output(unit_nr, logger, input, &
2021 82 : "DFT%PRINT%TOT_DENSITY_CUBE", mpi_io=mpi_io)
2022 82 : CALL auxbas_pw_pool%give_back_pw(wf_r)
2023 : END IF
2024 :
2025 : ! Write cube file with electron density
2026 11299 : IF (BTEST(cp_print_key_should_output(logger%iter_info, input, &
2027 : "DFT%PRINT%E_DENSITY_CUBE"), cp_p_file)) THEN
2028 : CALL section_vals_val_get(dft_section, &
2029 : keyword_name="PRINT%E_DENSITY_CUBE%DENSITY_INCLUDE", &
2030 150 : c_val=print_density)
2031 : print_density = TRIM(print_density)
2032 150 : append_cube = section_get_lval(input, "DFT%PRINT%E_DENSITY_CUBE%APPEND")
2033 150 : my_pos_cube = "REWIND"
2034 150 : IF (append_cube) THEN
2035 0 : my_pos_cube = "APPEND"
2036 : END IF
2037 : ! Write the info on core densities for the interface between cp2k and the XRD code
2038 : ! together with the valence density they are used to compute the form factor (Fourier transform)
2039 150 : xrd_interface = section_get_lval(input, "DFT%PRINT%E_DENSITY_CUBE%XRD_INTERFACE")
2040 150 : IF (xrd_interface) THEN
2041 : !cube file only contains soft density (GAPW)
2042 2 : IF (dft_control%qs_control%gapw) print_density = "SOFT_DENSITY"
2043 :
2044 2 : filename = "ELECTRON_DENSITY"
2045 : unit_nr = cp_print_key_unit_nr(logger, input, "DFT%PRINT%E_DENSITY_CUBE", &
2046 : extension=".xrd", middle_name=TRIM(filename), &
2047 2 : file_position=my_pos_cube, log_filename=.FALSE.)
2048 2 : ngto = section_get_ival(input, "DFT%PRINT%E_DENSITY_CUBE%NGAUSS")
2049 2 : IF (output_unit > 0) THEN
2050 1 : INQUIRE (UNIT=unit_nr, NAME=filename)
2051 : WRITE (UNIT=output_unit, FMT="(/,T2,A,/,/,T2,A)") &
2052 1 : "The electron density (atomic part) is written to the file:", &
2053 2 : TRIM(filename)
2054 : END IF
2055 :
2056 2 : xc_section => section_vals_get_subs_vals(input, "DFT%XC")
2057 2 : nkind = SIZE(atomic_kind_set)
2058 2 : IF (unit_nr > 0) THEN
2059 1 : WRITE (unit_nr, *) "Atomic (core) densities"
2060 1 : WRITE (unit_nr, *) "Unit cell"
2061 1 : WRITE (unit_nr, FMT="(3F20.12)") cell%hmat(1, 1), cell%hmat(1, 2), cell%hmat(1, 3)
2062 1 : WRITE (unit_nr, FMT="(3F20.12)") cell%hmat(2, 1), cell%hmat(2, 2), cell%hmat(2, 3)
2063 1 : WRITE (unit_nr, FMT="(3F20.12)") cell%hmat(3, 1), cell%hmat(3, 2), cell%hmat(3, 3)
2064 1 : WRITE (unit_nr, *) "Atomic types"
2065 1 : WRITE (unit_nr, *) nkind
2066 : END IF
2067 : ! calculate atomic density and core density
2068 16 : ALLOCATE (ppdens(ngto, 2, nkind), aedens(ngto, 2, nkind), ccdens(ngto, 2, nkind))
2069 6 : DO ikind = 1, nkind
2070 4 : atomic_kind => atomic_kind_set(ikind)
2071 4 : qs_kind => qs_kind_set(ikind)
2072 4 : CALL get_atomic_kind(atomic_kind, name=name, element_symbol=element_symbol)
2073 : CALL calculate_atomic_density(ppdens(:, :, ikind), atomic_kind, qs_kind, ngto, &
2074 4 : iunit=output_unit, confine=.TRUE.)
2075 : CALL calculate_atomic_density(aedens(:, :, ikind), atomic_kind, qs_kind, ngto, &
2076 4 : iunit=output_unit, allelectron=.TRUE., confine=.TRUE.)
2077 52 : ccdens(:, 1, ikind) = aedens(:, 1, ikind)
2078 52 : ccdens(:, 2, ikind) = 0._dp
2079 : CALL project_function_a(ccdens(1:ngto, 2, ikind), ccdens(1:ngto, 1, ikind), &
2080 4 : ppdens(1:ngto, 2, ikind), ppdens(1:ngto, 1, ikind), 0)
2081 52 : ccdens(:, 2, ikind) = aedens(:, 2, ikind) - ccdens(:, 2, ikind)
2082 4 : IF (unit_nr > 0) THEN
2083 2 : WRITE (unit_nr, FMT="(I6,A10,A20)") ikind, TRIM(element_symbol), TRIM(name)
2084 2 : WRITE (unit_nr, FMT="(I6)") ngto
2085 2 : WRITE (unit_nr, *) " Total density"
2086 26 : WRITE (unit_nr, FMT="(2G24.12)") (aedens(i, 1, ikind), aedens(i, 2, ikind), i=1, ngto)
2087 2 : WRITE (unit_nr, *) " Core density"
2088 26 : WRITE (unit_nr, FMT="(2G24.12)") (ccdens(i, 1, ikind), ccdens(i, 2, ikind), i=1, ngto)
2089 : END IF
2090 6 : NULLIFY (atomic_kind)
2091 : END DO
2092 :
2093 2 : IF (dft_control%qs_control%gapw) THEN
2094 2 : CALL get_qs_env(qs_env=qs_env, rho_atom_set=rho_atom_set)
2095 :
2096 2 : IF (unit_nr > 0) THEN
2097 1 : WRITE (unit_nr, *) "Coordinates and GAPW density"
2098 : END IF
2099 2 : np = particles%n_els
2100 6 : DO iat = 1, np
2101 4 : CALL get_atomic_kind(particles%els(iat)%atomic_kind, kind_number=ikind)
2102 4 : CALL get_qs_kind(qs_kind_set(ikind), grid_atom=grid_atom)
2103 4 : rho_atom => rho_atom_set(iat)
2104 4 : IF (ASSOCIATED(rho_atom%rho_rad_h(1)%r_coef)) THEN
2105 2 : nr = SIZE(rho_atom%rho_rad_h(1)%r_coef, 1)
2106 2 : niso = SIZE(rho_atom%rho_rad_h(1)%r_coef, 2)
2107 : ELSE
2108 2 : nr = 0
2109 2 : niso = 0
2110 : END IF
2111 4 : CALL para_env%sum(nr)
2112 4 : CALL para_env%sum(niso)
2113 :
2114 16 : ALLOCATE (bfun(nr, niso))
2115 1840 : bfun = 0._dp
2116 8 : DO ispin = 1, dft_control%nspins
2117 8 : IF (ASSOCIATED(rho_atom%rho_rad_h(1)%r_coef)) THEN
2118 920 : bfun(:, :) = bfun + rho_atom%rho_rad_h(ispin)%r_coef - rho_atom%rho_rad_s(ispin)%r_coef
2119 : END IF
2120 : END DO
2121 4 : CALL para_env%sum(bfun)
2122 52 : ccdens(:, 1, ikind) = ppdens(:, 1, ikind)
2123 52 : ccdens(:, 2, ikind) = 0._dp
2124 4 : IF (unit_nr > 0) THEN
2125 8 : WRITE (unit_nr, '(I10,I5,3f12.6)') iat, ikind, particles%els(iat)%r
2126 : END IF
2127 40 : DO iso = 1, niso
2128 36 : l = indso(1, iso)
2129 36 : CALL project_function_b(ccdens(:, 2, ikind), ccdens(:, 1, ikind), bfun(:, iso), grid_atom, l)
2130 40 : IF (unit_nr > 0) THEN
2131 18 : WRITE (unit_nr, FMT="(3I6)") iso, l, ngto
2132 234 : WRITE (unit_nr, FMT="(2G24.12)") (ccdens(i, 1, ikind), ccdens(i, 2, ikind), i=1, ngto)
2133 : END IF
2134 : END DO
2135 10 : DEALLOCATE (bfun)
2136 : END DO
2137 : ELSE
2138 0 : IF (unit_nr > 0) THEN
2139 0 : WRITE (unit_nr, *) "Coordinates"
2140 0 : np = particles%n_els
2141 0 : DO iat = 1, np
2142 0 : CALL get_atomic_kind(particles%els(iat)%atomic_kind, kind_number=ikind)
2143 0 : WRITE (unit_nr, '(I10,I5,3f12.6)') iat, ikind, particles%els(iat)%r
2144 : END DO
2145 : END IF
2146 : END IF
2147 :
2148 2 : DEALLOCATE (ppdens, aedens, ccdens)
2149 :
2150 : CALL cp_print_key_finished_output(unit_nr, logger, input, &
2151 2 : "DFT%PRINT%E_DENSITY_CUBE")
2152 :
2153 : END IF
2154 150 : IF (dft_control%qs_control%gapw .AND. print_density == "TOTAL_DENSITY") THEN
2155 : ! total density in g-space not implemented for k-points
2156 4 : CPASSERT(.NOT. do_kpoints)
2157 : ! Print total electronic density
2158 : CALL get_qs_env(qs_env=qs_env, &
2159 4 : pw_env=pw_env)
2160 : CALL pw_env_get(pw_env=pw_env, &
2161 : auxbas_pw_pool=auxbas_pw_pool, &
2162 4 : pw_pools=pw_pools)
2163 4 : CALL auxbas_pw_pool%create_pw(pw=rho_elec_rspace)
2164 4 : CALL pw_zero(rho_elec_rspace)
2165 4 : CALL auxbas_pw_pool%create_pw(pw=rho_elec_gspace)
2166 4 : CALL pw_zero(rho_elec_gspace)
2167 : CALL get_pw_grid_info(pw_grid=rho_elec_gspace%pw_grid, &
2168 : dr=dr, &
2169 4 : vol=volume)
2170 16 : q_max = SQRT(SUM((pi/dr(:))**2))
2171 : CALL calculate_rhotot_elec_gspace(qs_env=qs_env, &
2172 : auxbas_pw_pool=auxbas_pw_pool, &
2173 : rhotot_elec_gspace=rho_elec_gspace, &
2174 : q_max=q_max, &
2175 : rho_hard=rho_hard, &
2176 4 : rho_soft=rho_soft)
2177 4 : rho_total = rho_hard + rho_soft
2178 : CALL get_pw_grid_info(pw_grid=rho_elec_gspace%pw_grid, &
2179 4 : vol=volume)
2180 : ! rhotot pw coefficients are by default scaled by grid volume
2181 : ! need to undo this to get proper charge from printed cube
2182 4 : CALL pw_scale(rho_elec_gspace, 1.0_dp/volume)
2183 :
2184 4 : CALL pw_transfer(rho_elec_gspace, rho_elec_rspace)
2185 4 : rho_total_rspace = pw_integrate_function(rho_elec_rspace, isign=-1)
2186 4 : filename = "TOTAL_ELECTRON_DENSITY"
2187 4 : mpi_io = .TRUE.
2188 : unit_nr = cp_print_key_unit_nr(logger, input, "DFT%PRINT%E_DENSITY_CUBE", &
2189 : extension=".cube", middle_name=TRIM(filename), &
2190 : file_position=my_pos_cube, log_filename=.FALSE., mpi_io=mpi_io, &
2191 4 : fout=mpi_filename)
2192 4 : IF (output_unit > 0) THEN
2193 2 : IF (.NOT. mpi_io) THEN
2194 0 : INQUIRE (UNIT=unit_nr, NAME=filename)
2195 : ELSE
2196 2 : filename = mpi_filename
2197 : END IF
2198 : WRITE (UNIT=output_unit, FMT="(/,T2,A,/,/,T2,A)") &
2199 2 : "The total electron density is written in cube file format to the file:", &
2200 4 : TRIM(filename)
2201 : WRITE (UNIT=output_unit, FMT="(/,(T2,A,F20.10))") &
2202 2 : "q(max) [1/Angstrom] :", q_max/angstrom, &
2203 2 : "Soft electronic charge (G-space) :", rho_soft, &
2204 2 : "Hard electronic charge (G-space) :", rho_hard, &
2205 2 : "Total electronic charge (G-space):", rho_total, &
2206 4 : "Total electronic charge (R-space):", rho_total_rspace
2207 : END IF
2208 : CALL cp_pw_to_cube(rho_elec_rspace, unit_nr, "TOTAL ELECTRON DENSITY", &
2209 : particles=particles, zeff=zcharge, &
2210 4 : stride=section_get_ivals(dft_section, "PRINT%E_DENSITY_CUBE%STRIDE"), mpi_io=mpi_io)
2211 : CALL cp_print_key_finished_output(unit_nr, logger, input, &
2212 4 : "DFT%PRINT%E_DENSITY_CUBE", mpi_io=mpi_io)
2213 : ! Print total spin density for spin-polarized systems
2214 4 : IF (dft_control%nspins > 1) THEN
2215 2 : CALL pw_zero(rho_elec_gspace)
2216 2 : CALL pw_zero(rho_elec_rspace)
2217 : CALL calculate_rhotot_elec_gspace(qs_env=qs_env, &
2218 : auxbas_pw_pool=auxbas_pw_pool, &
2219 : rhotot_elec_gspace=rho_elec_gspace, &
2220 : q_max=q_max, &
2221 : rho_hard=rho_hard, &
2222 : rho_soft=rho_soft, &
2223 2 : fsign=-1.0_dp)
2224 2 : rho_total = rho_hard + rho_soft
2225 :
2226 : ! rhotot pw coefficients are by default scaled by grid volume
2227 : ! need to undo this to get proper charge from printed cube
2228 2 : CALL pw_scale(rho_elec_gspace, 1.0_dp/volume)
2229 :
2230 2 : CALL pw_transfer(rho_elec_gspace, rho_elec_rspace)
2231 2 : rho_total_rspace = pw_integrate_function(rho_elec_rspace, isign=-1)
2232 2 : filename = "TOTAL_SPIN_DENSITY"
2233 2 : mpi_io = .TRUE.
2234 : unit_nr = cp_print_key_unit_nr(logger, input, "DFT%PRINT%E_DENSITY_CUBE", &
2235 : extension=".cube", middle_name=TRIM(filename), &
2236 : file_position=my_pos_cube, log_filename=.FALSE., mpi_io=mpi_io, &
2237 2 : fout=mpi_filename)
2238 2 : IF (output_unit > 0) THEN
2239 1 : IF (.NOT. mpi_io) THEN
2240 0 : INQUIRE (UNIT=unit_nr, NAME=filename)
2241 : ELSE
2242 1 : filename = mpi_filename
2243 : END IF
2244 : WRITE (UNIT=output_unit, FMT="(/,T2,A,/,/,T2,A)") &
2245 1 : "The total spin density is written in cube file format to the file:", &
2246 2 : TRIM(filename)
2247 : WRITE (UNIT=output_unit, FMT="(/,(T2,A,F20.10))") &
2248 1 : "q(max) [1/Angstrom] :", q_max/angstrom, &
2249 1 : "Soft part of the spin density (G-space):", rho_soft, &
2250 1 : "Hard part of the spin density (G-space):", rho_hard, &
2251 1 : "Total spin density (G-space) :", rho_total, &
2252 2 : "Total spin density (R-space) :", rho_total_rspace
2253 : END IF
2254 : CALL cp_pw_to_cube(rho_elec_rspace, unit_nr, "TOTAL SPIN DENSITY", &
2255 : particles=particles, zeff=zcharge, &
2256 2 : stride=section_get_ivals(dft_section, "PRINT%E_DENSITY_CUBE%STRIDE"), mpi_io=mpi_io)
2257 : CALL cp_print_key_finished_output(unit_nr, logger, input, &
2258 2 : "DFT%PRINT%E_DENSITY_CUBE", mpi_io=mpi_io)
2259 : END IF
2260 4 : CALL auxbas_pw_pool%give_back_pw(rho_elec_gspace)
2261 4 : CALL auxbas_pw_pool%give_back_pw(rho_elec_rspace)
2262 :
2263 146 : ELSE IF (print_density == "SOFT_DENSITY" .OR. .NOT. dft_control%qs_control%gapw) THEN
2264 142 : IF (dft_control%nspins > 1) THEN
2265 : CALL get_qs_env(qs_env=qs_env, &
2266 48 : pw_env=pw_env)
2267 : CALL pw_env_get(pw_env=pw_env, &
2268 : auxbas_pw_pool=auxbas_pw_pool, &
2269 48 : pw_pools=pw_pools)
2270 48 : CALL auxbas_pw_pool%create_pw(pw=rho_elec_rspace)
2271 48 : CALL pw_copy(rho_r(1), rho_elec_rspace)
2272 48 : CALL pw_axpy(rho_r(2), rho_elec_rspace)
2273 48 : filename = "ELECTRON_DENSITY"
2274 48 : mpi_io = .TRUE.
2275 : unit_nr = cp_print_key_unit_nr(logger, input, "DFT%PRINT%E_DENSITY_CUBE", &
2276 : extension=".cube", middle_name=TRIM(filename), &
2277 : file_position=my_pos_cube, log_filename=.FALSE., mpi_io=mpi_io, &
2278 48 : fout=mpi_filename)
2279 48 : IF (output_unit > 0) THEN
2280 24 : IF (.NOT. mpi_io) THEN
2281 0 : INQUIRE (UNIT=unit_nr, NAME=filename)
2282 : ELSE
2283 24 : filename = mpi_filename
2284 : END IF
2285 : WRITE (UNIT=output_unit, FMT="(/,T2,A,/,/,T2,A)") &
2286 24 : "The sum of alpha and beta density is written in cube file format to the file:", &
2287 48 : TRIM(filename)
2288 : END IF
2289 : CALL cp_pw_to_cube(rho_elec_rspace, unit_nr, "SUM OF ALPHA AND BETA DENSITY", &
2290 : particles=particles, zeff=zcharge, &
2291 : stride=section_get_ivals(dft_section, "PRINT%E_DENSITY_CUBE%STRIDE"), &
2292 48 : mpi_io=mpi_io)
2293 : CALL cp_print_key_finished_output(unit_nr, logger, input, &
2294 48 : "DFT%PRINT%E_DENSITY_CUBE", mpi_io=mpi_io)
2295 48 : CALL pw_copy(rho_r(1), rho_elec_rspace)
2296 48 : CALL pw_axpy(rho_r(2), rho_elec_rspace, alpha=-1.0_dp)
2297 48 : filename = "SPIN_DENSITY"
2298 48 : mpi_io = .TRUE.
2299 : unit_nr = cp_print_key_unit_nr(logger, input, "DFT%PRINT%E_DENSITY_CUBE", &
2300 : extension=".cube", middle_name=TRIM(filename), &
2301 : file_position=my_pos_cube, log_filename=.FALSE., mpi_io=mpi_io, &
2302 48 : fout=mpi_filename)
2303 48 : IF (output_unit > 0) THEN
2304 24 : IF (.NOT. mpi_io) THEN
2305 0 : INQUIRE (UNIT=unit_nr, NAME=filename)
2306 : ELSE
2307 24 : filename = mpi_filename
2308 : END IF
2309 : WRITE (UNIT=output_unit, FMT="(/,T2,A,/,/,T2,A)") &
2310 24 : "The spin density is written in cube file format to the file:", &
2311 48 : TRIM(filename)
2312 : END IF
2313 : CALL cp_pw_to_cube(rho_elec_rspace, unit_nr, "SPIN DENSITY", &
2314 : particles=particles, zeff=zcharge, &
2315 48 : stride=section_get_ivals(dft_section, "PRINT%E_DENSITY_CUBE%STRIDE"), mpi_io=mpi_io)
2316 : CALL cp_print_key_finished_output(unit_nr, logger, input, &
2317 48 : "DFT%PRINT%E_DENSITY_CUBE", mpi_io=mpi_io)
2318 48 : CALL auxbas_pw_pool%give_back_pw(rho_elec_rspace)
2319 : ELSE
2320 94 : filename = "ELECTRON_DENSITY"
2321 94 : mpi_io = .TRUE.
2322 : unit_nr = cp_print_key_unit_nr(logger, input, "DFT%PRINT%E_DENSITY_CUBE", &
2323 : extension=".cube", middle_name=TRIM(filename), &
2324 : file_position=my_pos_cube, log_filename=.FALSE., mpi_io=mpi_io, &
2325 94 : fout=mpi_filename)
2326 94 : IF (output_unit > 0) THEN
2327 47 : IF (.NOT. mpi_io) THEN
2328 0 : INQUIRE (UNIT=unit_nr, NAME=filename)
2329 : ELSE
2330 47 : filename = mpi_filename
2331 : END IF
2332 : WRITE (UNIT=output_unit, FMT="(/,T2,A,/,/,T2,A)") &
2333 47 : "The electron density is written in cube file format to the file:", &
2334 94 : TRIM(filename)
2335 : END IF
2336 : CALL cp_pw_to_cube(rho_r(1), unit_nr, "ELECTRON DENSITY", &
2337 : particles=particles, zeff=zcharge, &
2338 94 : stride=section_get_ivals(dft_section, "PRINT%E_DENSITY_CUBE%STRIDE"), mpi_io=mpi_io)
2339 : CALL cp_print_key_finished_output(unit_nr, logger, input, &
2340 94 : "DFT%PRINT%E_DENSITY_CUBE", mpi_io=mpi_io)
2341 : END IF ! nspins
2342 :
2343 4 : ELSE IF (dft_control%qs_control%gapw .AND. print_density == "TOTAL_HARD_APPROX") THEN
2344 4 : CALL get_qs_env(qs_env=qs_env, pw_env=pw_env, rho0_mpole=rho0_mpole, natom=natom)
2345 4 : CALL pw_env_get(pw_env, auxbas_pw_pool=auxbas_pw_pool, pw_pools=pw_pools)
2346 4 : CALL auxbas_pw_pool%create_pw(rho_elec_rspace)
2347 :
2348 4 : NULLIFY (my_Q0)
2349 12 : ALLOCATE (my_Q0(natom))
2350 16 : my_Q0 = 0.0_dp
2351 :
2352 : ! (eta/pi)**3: normalization for 3d gaussian of form exp(-eta*r**2)
2353 4 : norm_factor = SQRT((rho0_mpole%zet0_h/pi)**3)
2354 :
2355 : ! store hard part of electronic density in array
2356 16 : DO iat = 1, natom
2357 34 : my_Q0(iat) = SUM(rho0_mpole%mp_rho(iat)%Q0(1:dft_control%nspins))*norm_factor
2358 : END DO
2359 : ! multiply coeff with gaussian and put on realspace grid
2360 : ! coeff is the gaussian prefactor, eta the gaussian exponent
2361 4 : CALL calculate_rho_resp_all(rho_elec_rspace, coeff=my_Q0, natom=natom, eta=rho0_mpole%zet0_h, qs_env=qs_env)
2362 4 : rho_hard = pw_integrate_function(rho_elec_rspace, isign=-1)
2363 :
2364 4 : rho_soft = 0.0_dp
2365 10 : DO ispin = 1, dft_control%nspins
2366 6 : CALL pw_axpy(rho_r(ispin), rho_elec_rspace)
2367 10 : rho_soft = rho_soft + pw_integrate_function(rho_r(ispin), isign=-1)
2368 : END DO
2369 :
2370 4 : rho_total_rspace = rho_soft + rho_hard
2371 :
2372 4 : filename = "ELECTRON_DENSITY"
2373 4 : mpi_io = .TRUE.
2374 : unit_nr = cp_print_key_unit_nr(logger, input, "DFT%PRINT%E_DENSITY_CUBE", &
2375 : extension=".cube", middle_name=TRIM(filename), &
2376 : file_position=my_pos_cube, log_filename=.FALSE., mpi_io=mpi_io, &
2377 4 : fout=mpi_filename)
2378 4 : IF (output_unit > 0) THEN
2379 2 : IF (.NOT. mpi_io) THEN
2380 0 : INQUIRE (UNIT=unit_nr, NAME=filename)
2381 : ELSE
2382 2 : filename = mpi_filename
2383 : END IF
2384 : WRITE (UNIT=output_unit, FMT="(/,T2,A,/,/,T2,A)") &
2385 2 : "The electron density is written in cube file format to the file:", &
2386 4 : TRIM(filename)
2387 : WRITE (UNIT=output_unit, FMT="(/,(T2,A,F20.10))") &
2388 2 : "Soft electronic charge (R-space) :", rho_soft, &
2389 2 : "Hard electronic charge (R-space) :", rho_hard, &
2390 4 : "Total electronic charge (R-space):", rho_total_rspace
2391 : END IF
2392 : CALL cp_pw_to_cube(rho_elec_rspace, unit_nr, "ELECTRON DENSITY", &
2393 : particles=particles, zeff=zcharge, &
2394 : stride=section_get_ivals(dft_section, "PRINT%E_DENSITY_CUBE%STRIDE"), &
2395 4 : mpi_io=mpi_io)
2396 : CALL cp_print_key_finished_output(unit_nr, logger, input, &
2397 4 : "DFT%PRINT%E_DENSITY_CUBE", mpi_io=mpi_io)
2398 :
2399 : !------------
2400 4 : IF (dft_control%nspins > 1) THEN
2401 8 : DO iat = 1, natom
2402 8 : my_Q0(iat) = (rho0_mpole%mp_rho(iat)%Q0(1) - rho0_mpole%mp_rho(iat)%Q0(2))*norm_factor
2403 : END DO
2404 2 : CALL pw_zero(rho_elec_rspace)
2405 2 : CALL calculate_rho_resp_all(rho_elec_rspace, coeff=my_Q0, natom=natom, eta=rho0_mpole%zet0_h, qs_env=qs_env)
2406 2 : rho_hard = pw_integrate_function(rho_elec_rspace, isign=-1)
2407 :
2408 2 : CALL pw_axpy(rho_r(1), rho_elec_rspace)
2409 2 : CALL pw_axpy(rho_r(2), rho_elec_rspace, alpha=-1.0_dp)
2410 : rho_soft = pw_integrate_function(rho_r(1), isign=-1) &
2411 2 : - pw_integrate_function(rho_r(2), isign=-1)
2412 :
2413 2 : rho_total_rspace = rho_soft + rho_hard
2414 :
2415 2 : filename = "SPIN_DENSITY"
2416 2 : mpi_io = .TRUE.
2417 : unit_nr = cp_print_key_unit_nr(logger, input, "DFT%PRINT%E_DENSITY_CUBE", &
2418 : extension=".cube", middle_name=TRIM(filename), &
2419 : file_position=my_pos_cube, log_filename=.FALSE., mpi_io=mpi_io, &
2420 2 : fout=mpi_filename)
2421 2 : IF (output_unit > 0) THEN
2422 1 : IF (.NOT. mpi_io) THEN
2423 0 : INQUIRE (UNIT=unit_nr, NAME=filename)
2424 : ELSE
2425 1 : filename = mpi_filename
2426 : END IF
2427 : WRITE (UNIT=output_unit, FMT="(/,T2,A,/,/,T2,A)") &
2428 1 : "The spin density is written in cube file format to the file:", &
2429 2 : TRIM(filename)
2430 : WRITE (UNIT=output_unit, FMT="(/,(T2,A,F20.10))") &
2431 1 : "Soft part of the spin density :", rho_soft, &
2432 1 : "Hard part of the spin density :", rho_hard, &
2433 2 : "Total spin density (R-space) :", rho_total_rspace
2434 : END IF
2435 : CALL cp_pw_to_cube(rho_elec_rspace, unit_nr, "SPIN DENSITY", &
2436 : particles=particles, zeff=zcharge, &
2437 2 : stride=section_get_ivals(dft_section, "PRINT%E_DENSITY_CUBE%STRIDE"), mpi_io=mpi_io)
2438 : CALL cp_print_key_finished_output(unit_nr, logger, input, &
2439 2 : "DFT%PRINT%E_DENSITY_CUBE", mpi_io=mpi_io)
2440 : END IF ! nspins
2441 4 : CALL auxbas_pw_pool%give_back_pw(rho_elec_rspace)
2442 4 : DEALLOCATE (my_Q0)
2443 : END IF ! print_density
2444 : END IF ! print key
2445 :
2446 : IF (BTEST(cp_print_key_should_output(logger%iter_info, &
2447 11299 : dft_section, "PRINT%ENERGY_WINDOWS"), cp_p_file) .AND. .NOT. do_kpoints) THEN
2448 90 : CALL energy_windows(qs_env)
2449 : END IF
2450 :
2451 : ! Print the hartree potential
2452 11299 : IF (BTEST(cp_print_key_should_output(logger%iter_info, input, &
2453 : "DFT%PRINT%V_HARTREE_CUBE"), cp_p_file)) THEN
2454 :
2455 : CALL get_qs_env(qs_env=qs_env, &
2456 : pw_env=pw_env, &
2457 114 : v_hartree_rspace=v_hartree_rspace)
2458 114 : CALL pw_env_get(pw_env, auxbas_pw_pool=auxbas_pw_pool)
2459 114 : CALL auxbas_pw_pool%create_pw(aux_r)
2460 :
2461 114 : append_cube = section_get_lval(input, "DFT%PRINT%V_HARTREE_CUBE%APPEND")
2462 114 : my_pos_cube = "REWIND"
2463 114 : IF (append_cube) THEN
2464 0 : my_pos_cube = "APPEND"
2465 : END IF
2466 114 : mpi_io = .TRUE.
2467 114 : CALL get_qs_env(qs_env=qs_env, pw_env=pw_env)
2468 114 : CALL pw_env_get(pw_env)
2469 : unit_nr = cp_print_key_unit_nr(logger, input, "DFT%PRINT%V_HARTREE_CUBE", &
2470 114 : extension=".cube", middle_name="v_hartree", file_position=my_pos_cube, mpi_io=mpi_io)
2471 114 : udvol = 1.0_dp/v_hartree_rspace%pw_grid%dvol
2472 :
2473 114 : CALL pw_copy(v_hartree_rspace, aux_r)
2474 114 : CALL pw_scale(aux_r, udvol)
2475 :
2476 : CALL cp_pw_to_cube(aux_r, unit_nr, "HARTREE POTENTIAL", particles=particles, zeff=zcharge, &
2477 : stride=section_get_ivals(dft_section, &
2478 114 : "PRINT%V_HARTREE_CUBE%STRIDE"), mpi_io=mpi_io)
2479 : CALL cp_print_key_finished_output(unit_nr, logger, input, &
2480 114 : "DFT%PRINT%V_HARTREE_CUBE", mpi_io=mpi_io)
2481 :
2482 114 : CALL auxbas_pw_pool%give_back_pw(aux_r)
2483 : END IF
2484 :
2485 : ! Print the external potential
2486 11299 : IF (BTEST(cp_print_key_should_output(logger%iter_info, input, &
2487 : "DFT%PRINT%EXTERNAL_POTENTIAL_CUBE"), cp_p_file)) THEN
2488 86 : IF (dft_control%apply_external_potential) THEN
2489 4 : CALL get_qs_env(qs_env=qs_env, pw_env=pw_env, vee=vee)
2490 4 : CALL pw_env_get(pw_env, auxbas_pw_pool=auxbas_pw_pool)
2491 4 : CALL auxbas_pw_pool%create_pw(aux_r)
2492 :
2493 4 : append_cube = section_get_lval(input, "DFT%PRINT%EXTERNAL_POTENTIAL_CUBE%APPEND")
2494 4 : my_pos_cube = "REWIND"
2495 4 : IF (append_cube) THEN
2496 0 : my_pos_cube = "APPEND"
2497 : END IF
2498 4 : mpi_io = .TRUE.
2499 4 : CALL pw_env_get(pw_env)
2500 : unit_nr = cp_print_key_unit_nr(logger, input, "DFT%PRINT%EXTERNAL_POTENTIAL_CUBE", &
2501 4 : extension=".cube", middle_name="ext_pot", file_position=my_pos_cube, mpi_io=mpi_io)
2502 :
2503 4 : CALL pw_copy(vee, aux_r)
2504 :
2505 : CALL cp_pw_to_cube(aux_r, unit_nr, "EXTERNAL POTENTIAL", particles=particles, zeff=zcharge, &
2506 : stride=section_get_ivals(dft_section, &
2507 4 : "PRINT%EXTERNAL_POTENTIAL_CUBE%STRIDE"), mpi_io=mpi_io)
2508 : CALL cp_print_key_finished_output(unit_nr, logger, input, &
2509 4 : "DFT%PRINT%EXTERNAL_POTENTIAL_CUBE", mpi_io=mpi_io)
2510 :
2511 4 : CALL auxbas_pw_pool%give_back_pw(aux_r)
2512 : END IF
2513 : END IF
2514 :
2515 : ! Print the Electrical Field Components
2516 11299 : IF (BTEST(cp_print_key_should_output(logger%iter_info, input, &
2517 : "DFT%PRINT%EFIELD_CUBE"), cp_p_file)) THEN
2518 :
2519 82 : CALL get_qs_env(qs_env=qs_env, pw_env=pw_env)
2520 82 : CALL pw_env_get(pw_env, auxbas_pw_pool=auxbas_pw_pool)
2521 82 : CALL auxbas_pw_pool%create_pw(aux_r)
2522 82 : CALL auxbas_pw_pool%create_pw(aux_g)
2523 :
2524 82 : append_cube = section_get_lval(input, "DFT%PRINT%EFIELD_CUBE%APPEND")
2525 82 : my_pos_cube = "REWIND"
2526 82 : IF (append_cube) THEN
2527 0 : my_pos_cube = "APPEND"
2528 : END IF
2529 : CALL get_qs_env(qs_env=qs_env, pw_env=pw_env, &
2530 82 : v_hartree_rspace=v_hartree_rspace)
2531 82 : CALL pw_env_get(pw_env)
2532 82 : udvol = 1.0_dp/v_hartree_rspace%pw_grid%dvol
2533 328 : DO id = 1, 3
2534 246 : mpi_io = .TRUE.
2535 : unit_nr = cp_print_key_unit_nr(logger, input, "DFT%PRINT%EFIELD_CUBE", &
2536 : extension=".cube", middle_name="efield_"//cdir(id), file_position=my_pos_cube, &
2537 246 : mpi_io=mpi_io)
2538 :
2539 246 : CALL pw_transfer(v_hartree_rspace, aux_g)
2540 246 : nd = 0
2541 246 : nd(id) = 1
2542 246 : CALL pw_derive(aux_g, nd)
2543 246 : CALL pw_transfer(aux_g, aux_r)
2544 246 : CALL pw_scale(aux_r, udvol)
2545 :
2546 : CALL cp_pw_to_cube(aux_r, &
2547 : unit_nr, "ELECTRIC FIELD", particles=particles, zeff=zcharge, &
2548 : stride=section_get_ivals(dft_section, &
2549 246 : "PRINT%EFIELD_CUBE%STRIDE"), mpi_io=mpi_io)
2550 : CALL cp_print_key_finished_output(unit_nr, logger, input, &
2551 328 : "DFT%PRINT%EFIELD_CUBE", mpi_io=mpi_io)
2552 : END DO
2553 :
2554 82 : CALL auxbas_pw_pool%give_back_pw(aux_r)
2555 82 : CALL auxbas_pw_pool%give_back_pw(aux_g)
2556 : END IF
2557 :
2558 : ! Write cube files from the local energy
2559 11299 : CALL qs_scf_post_local_energy(input, logger, qs_env)
2560 :
2561 : ! Write cube files from the local stress tensor
2562 11299 : CALL qs_scf_post_local_stress(input, logger, qs_env)
2563 :
2564 : ! Write cube files from the implicit Poisson solver
2565 11299 : CALL qs_scf_post_ps_implicit(input, logger, qs_env)
2566 :
2567 : ! post SCF Transport
2568 11299 : CALL qs_scf_post_transport(qs_env)
2569 :
2570 11299 : CALL section_vals_val_get(input, "DFT%PRINT%AO_MATRICES%OMIT_HEADERS", l_val=omit_headers)
2571 : ! Write the density matrices
2572 11299 : IF (BTEST(cp_print_key_should_output(logger%iter_info, input, &
2573 : "DFT%PRINT%AO_MATRICES/DENSITY"), cp_p_file)) THEN
2574 : iw = cp_print_key_unit_nr(logger, input, "DFT%PRINT%AO_MATRICES/DENSITY", &
2575 4 : extension=".Log")
2576 4 : CALL section_vals_val_get(input, "DFT%PRINT%AO_MATRICES%NDIGITS", i_val=after)
2577 4 : CALL qs_rho_get(rho, rho_ao_kp=rho_ao)
2578 4 : after = MIN(MAX(after, 1), 16)
2579 8 : DO ispin = 1, dft_control%nspins
2580 12 : DO img = 1, dft_control%nimages
2581 : CALL cp_dbcsr_write_sparse_matrix(rho_ao(ispin, img)%matrix, 4, after, qs_env, &
2582 8 : para_env, output_unit=iw, omit_headers=omit_headers)
2583 : END DO
2584 : END DO
2585 : CALL cp_print_key_finished_output(iw, logger, input, &
2586 4 : "DFT%PRINT%AO_MATRICES/DENSITY")
2587 : END IF
2588 :
2589 : ! Write the Kohn-Sham matrices
2590 : write_ks = BTEST(cp_print_key_should_output(logger%iter_info, input, &
2591 11299 : "DFT%PRINT%AO_MATRICES/KOHN_SHAM_MATRIX"), cp_p_file)
2592 : write_xc = BTEST(cp_print_key_should_output(logger%iter_info, input, &
2593 11299 : "DFT%PRINT%AO_MATRICES/MATRIX_VXC"), cp_p_file)
2594 : ! we need to update stuff before writing, potentially computing the matrix_vxc
2595 11299 : IF (write_ks .OR. write_xc) THEN
2596 4 : IF (write_xc) qs_env%requires_matrix_vxc = .TRUE.
2597 4 : CALL qs_ks_did_change(qs_env%ks_env, rho_changed=.TRUE.)
2598 : CALL qs_ks_update_qs_env(qs_env, calculate_forces=.FALSE., &
2599 4 : just_energy=.FALSE.)
2600 4 : IF (write_xc) qs_env%requires_matrix_vxc = .FALSE.
2601 : END IF
2602 :
2603 : ! Write the Kohn-Sham matrices
2604 11299 : IF (write_ks) THEN
2605 : iw = cp_print_key_unit_nr(logger, input, "DFT%PRINT%AO_MATRICES/KOHN_SHAM_MATRIX", &
2606 4 : extension=".Log")
2607 4 : CALL get_qs_env(qs_env=qs_env, matrix_ks_kp=ks_rmpv)
2608 4 : CALL section_vals_val_get(input, "DFT%PRINT%AO_MATRICES%NDIGITS", i_val=after)
2609 4 : after = MIN(MAX(after, 1), 16)
2610 8 : DO ispin = 1, dft_control%nspins
2611 12 : DO img = 1, dft_control%nimages
2612 : CALL cp_dbcsr_write_sparse_matrix(ks_rmpv(ispin, img)%matrix, 4, after, qs_env, &
2613 8 : para_env, output_unit=iw, omit_headers=omit_headers)
2614 : END DO
2615 : END DO
2616 : CALL cp_print_key_finished_output(iw, logger, input, &
2617 4 : "DFT%PRINT%AO_MATRICES/KOHN_SHAM_MATRIX")
2618 : END IF
2619 :
2620 : ! write csr matrices
2621 : ! matrices in terms of the PAO basis will be taken care of in pao_post_scf.
2622 11299 : IF (.NOT. dft_control%qs_control%pao) THEN
2623 10787 : CALL write_ks_matrix_csr(qs_env, input)
2624 10787 : CALL write_s_matrix_csr(qs_env, input)
2625 10787 : CALL write_hcore_matrix_csr(qs_env, input)
2626 10787 : CALL write_p_matrix_csr(qs_env, input)
2627 : END IF
2628 :
2629 : ! write adjacency matrix
2630 11299 : CALL write_adjacency_matrix(qs_env, input)
2631 :
2632 : ! Write the xc matrix
2633 11299 : IF (write_xc) THEN
2634 0 : CALL get_qs_env(qs_env=qs_env, matrix_vxc_kp=matrix_vxc)
2635 0 : CPASSERT(ASSOCIATED(matrix_vxc))
2636 : iw = cp_print_key_unit_nr(logger, input, "DFT%PRINT%AO_MATRICES/MATRIX_VXC", &
2637 0 : extension=".Log")
2638 0 : CALL section_vals_val_get(input, "DFT%PRINT%AO_MATRICES%NDIGITS", i_val=after)
2639 0 : after = MIN(MAX(after, 1), 16)
2640 0 : DO ispin = 1, dft_control%nspins
2641 0 : DO img = 1, dft_control%nimages
2642 : CALL cp_dbcsr_write_sparse_matrix(matrix_vxc(ispin, img)%matrix, 4, after, qs_env, &
2643 0 : para_env, output_unit=iw, omit_headers=omit_headers)
2644 : END DO
2645 : END DO
2646 : CALL cp_print_key_finished_output(iw, logger, input, &
2647 0 : "DFT%PRINT%AO_MATRICES/MATRIX_VXC")
2648 : END IF
2649 :
2650 : ! Write the [H,r] commutator matrices
2651 11299 : IF (BTEST(cp_print_key_should_output(logger%iter_info, input, &
2652 : "DFT%PRINT%AO_MATRICES/COMMUTATOR_HR"), cp_p_file)) THEN
2653 : iw = cp_print_key_unit_nr(logger, input, "DFT%PRINT%AO_MATRICES/COMMUTATOR_HR", &
2654 0 : extension=".Log")
2655 0 : CALL section_vals_val_get(input, "DFT%PRINT%AO_MATRICES%NDIGITS", i_val=after)
2656 0 : NULLIFY (matrix_hr)
2657 0 : CALL build_com_hr_matrix(qs_env, matrix_hr)
2658 0 : after = MIN(MAX(after, 1), 16)
2659 0 : DO img = 1, 3
2660 : CALL cp_dbcsr_write_sparse_matrix(matrix_hr(img)%matrix, 4, after, qs_env, &
2661 0 : para_env, output_unit=iw, omit_headers=omit_headers)
2662 : END DO
2663 0 : CALL dbcsr_deallocate_matrix_set(matrix_hr)
2664 : CALL cp_print_key_finished_output(iw, logger, input, &
2665 0 : "DFT%PRINT%AO_MATRICES/COMMUTATOR_HR")
2666 : END IF
2667 :
2668 : ! Compute the Mulliken charges
2669 11299 : print_key => section_vals_get_subs_vals(input, "DFT%PRINT%MULLIKEN")
2670 11299 : IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
2671 4792 : unit_nr = cp_print_key_unit_nr(logger, input, "DFT%PRINT%MULLIKEN", extension=".mulliken", log_filename=.FALSE.)
2672 4792 : print_level = 1
2673 4792 : CALL section_vals_val_get(print_key, "PRINT_GOP", l_val=print_it)
2674 4792 : IF (print_it) print_level = 2
2675 4792 : CALL section_vals_val_get(print_key, "PRINT_ALL", l_val=print_it)
2676 4792 : IF (print_it) print_level = 3
2677 4792 : CALL mulliken_population_analysis(qs_env, unit_nr, print_level)
2678 4792 : CALL cp_print_key_finished_output(unit_nr, logger, input, "DFT%PRINT%MULLIKEN")
2679 : END IF
2680 :
2681 : ! Compute the Hirshfeld charges
2682 11299 : print_key => section_vals_get_subs_vals(input, "DFT%PRINT%HIRSHFELD")
2683 11299 : IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
2684 : ! we check if real space density is available
2685 4864 : NULLIFY (rho)
2686 4864 : CALL get_qs_env(qs_env=qs_env, rho=rho)
2687 4864 : CALL qs_rho_get(rho, rho_r_valid=rho_r_valid)
2688 4864 : IF (rho_r_valid) THEN
2689 4790 : unit_nr = cp_print_key_unit_nr(logger, input, "DFT%PRINT%HIRSHFELD", extension=".hirshfeld", log_filename=.FALSE.)
2690 4790 : CALL hirshfeld_charges(qs_env, print_key, unit_nr)
2691 4790 : CALL cp_print_key_finished_output(unit_nr, logger, input, "DFT%PRINT%HIRSHFELD")
2692 : END IF
2693 : END IF
2694 :
2695 : ! Compute EEQ charges
2696 11299 : print_key => section_vals_get_subs_vals(input, "DFT%PRINT%EEQ_CHARGES")
2697 11299 : IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
2698 30 : unit_nr = cp_print_key_unit_nr(logger, input, "DFT%PRINT%EEQ_CHARGES", extension=".eeq", log_filename=.FALSE.)
2699 30 : print_level = 1
2700 30 : CALL eeq_print(qs_env, unit_nr, print_level, ext=.FALSE.)
2701 30 : CALL cp_print_key_finished_output(unit_nr, logger, input, "DFT%PRINT%MULLIKEN")
2702 : END IF
2703 :
2704 : ! Do a Voronoi Integration or write a compressed BQB File
2705 11299 : print_key_voro => section_vals_get_subs_vals(input, "DFT%PRINT%VORONOI")
2706 11299 : print_key_bqb => section_vals_get_subs_vals(input, "DFT%PRINT%E_DENSITY_BQB")
2707 11299 : IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key_voro), cp_p_file)) THEN
2708 24 : should_print_voro = 1
2709 : ELSE
2710 11275 : should_print_voro = 0
2711 : END IF
2712 11299 : IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key_bqb), cp_p_file)) THEN
2713 2 : should_print_bqb = 1
2714 : ELSE
2715 11297 : should_print_bqb = 0
2716 : END IF
2717 11299 : IF ((should_print_voro /= 0) .OR. (should_print_bqb /= 0)) THEN
2718 :
2719 : ! we check if real space density is available
2720 26 : NULLIFY (rho)
2721 26 : CALL get_qs_env(qs_env=qs_env, rho=rho)
2722 26 : CALL qs_rho_get(rho, rho_r_valid=rho_r_valid)
2723 26 : IF (rho_r_valid) THEN
2724 :
2725 26 : IF (dft_control%nspins > 1) THEN
2726 : CALL get_qs_env(qs_env=qs_env, &
2727 0 : pw_env=pw_env)
2728 : CALL pw_env_get(pw_env=pw_env, &
2729 : auxbas_pw_pool=auxbas_pw_pool, &
2730 0 : pw_pools=pw_pools)
2731 0 : NULLIFY (mb_rho)
2732 0 : ALLOCATE (mb_rho)
2733 0 : CALL auxbas_pw_pool%create_pw(pw=mb_rho)
2734 0 : CALL pw_copy(rho_r(1), mb_rho)
2735 0 : CALL pw_axpy(rho_r(2), mb_rho)
2736 : !CALL voronoi_analysis(qs_env, rho_elec_rspace, print_key, unit_nr)
2737 : ELSE
2738 26 : mb_rho => rho_r(1)
2739 : !CALL voronoi_analysis( qs_env, rho_r(1), print_key, unit_nr )
2740 : END IF ! nspins
2741 :
2742 26 : IF (should_print_voro /= 0) THEN
2743 24 : CALL section_vals_val_get(print_key_voro, "OUTPUT_TEXT", l_val=voro_print_txt)
2744 24 : IF (voro_print_txt) THEN
2745 24 : append_voro = section_get_lval(input, "DFT%PRINT%VORONOI%APPEND")
2746 24 : my_pos_voro = "REWIND"
2747 24 : IF (append_voro) THEN
2748 0 : my_pos_voro = "APPEND"
2749 : END IF
2750 : unit_nr_voro = cp_print_key_unit_nr(logger, input, "DFT%PRINT%VORONOI", extension=".voronoi", &
2751 24 : file_position=my_pos_voro, log_filename=.FALSE.)
2752 : ELSE
2753 0 : unit_nr_voro = 0
2754 : END IF
2755 : ELSE
2756 2 : unit_nr_voro = 0
2757 : END IF
2758 :
2759 : CALL entry_voronoi_or_bqb(should_print_voro, should_print_bqb, print_key_voro, print_key_bqb, &
2760 26 : unit_nr_voro, qs_env, mb_rho)
2761 :
2762 26 : IF (dft_control%nspins > 1) THEN
2763 0 : CALL auxbas_pw_pool%give_back_pw(mb_rho)
2764 0 : DEALLOCATE (mb_rho)
2765 : END IF
2766 :
2767 26 : IF (unit_nr_voro > 0) THEN
2768 12 : CALL cp_print_key_finished_output(unit_nr_voro, logger, input, "DFT%PRINT%VORONOI")
2769 : END IF
2770 :
2771 : END IF
2772 : END IF
2773 :
2774 : ! MAO analysis
2775 11299 : print_key => section_vals_get_subs_vals(input, "DFT%PRINT%MAO_ANALYSIS")
2776 11299 : IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
2777 38 : unit_nr = cp_print_key_unit_nr(logger, input, "DFT%PRINT%MAO_ANALYSIS", extension=".mao", log_filename=.FALSE.)
2778 38 : CALL mao_analysis(qs_env, print_key, unit_nr)
2779 38 : CALL cp_print_key_finished_output(unit_nr, logger, input, "DFT%PRINT%MAO_ANALYSIS")
2780 : END IF
2781 :
2782 : ! MINBAS analysis
2783 11299 : print_key => section_vals_get_subs_vals(input, "DFT%PRINT%MINBAS_ANALYSIS")
2784 11299 : IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
2785 28 : unit_nr = cp_print_key_unit_nr(logger, input, "DFT%PRINT%MINBAS_ANALYSIS", extension=".mao", log_filename=.FALSE.)
2786 28 : CALL minbas_analysis(qs_env, print_key, unit_nr)
2787 28 : CALL cp_print_key_finished_output(unit_nr, logger, input, "DFT%PRINT%MINBAS_ANALYSIS")
2788 : END IF
2789 :
2790 : ! IAO analysis
2791 11299 : print_key => section_vals_get_subs_vals(input, "DFT%PRINT%IAO_ANALYSIS")
2792 11299 : IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
2793 32 : unit_nr = cp_print_key_unit_nr(logger, input, "DFT%PRINT%IAO_ANALYSIS", extension=".iao", log_filename=.FALSE.)
2794 32 : CALL iao_read_input(iao_env, print_key, cell)
2795 32 : IF (iao_env%do_iao) THEN
2796 4 : CALL iao_wfn_analysis(qs_env, iao_env, unit_nr)
2797 : END IF
2798 32 : CALL cp_print_key_finished_output(unit_nr, logger, input, "DFT%PRINT%IAO_ANALYSIS")
2799 : END IF
2800 :
2801 : ! Energy Decomposition Analysis
2802 11299 : print_key => section_vals_get_subs_vals(input, "DFT%PRINT%ENERGY_DECOMPOSITION_ANALYSIS")
2803 11299 : IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
2804 : unit_nr = cp_print_key_unit_nr(logger, input, "DFT%PRINT%ENERGY_DECOMPOSITION_ANALYSIS", &
2805 58 : extension=".mao", log_filename=.FALSE.)
2806 58 : CALL edmf_analysis(qs_env, print_key, unit_nr)
2807 58 : CALL cp_print_key_finished_output(unit_nr, logger, input, "DFT%PRINT%ENERGY_DECOMPOSITION_ANALYSIS")
2808 : END IF
2809 :
2810 : ! Print the density in the RI-HFX basis
2811 11299 : hfx_section => section_vals_get_subs_vals(input, "DFT%XC%HF")
2812 11299 : CALL section_vals_get(hfx_section, explicit=do_hfx)
2813 11299 : CALL section_vals_get(hfx_section, n_repetition=n_rep_hf)
2814 11299 : IF (do_hfx) THEN
2815 4526 : DO i = 1, n_rep_hf
2816 4526 : IF (qs_env%x_data(i, 1)%do_hfx_ri) CALL print_ri_hfx(qs_env%x_data(i, 1)%ri_data, qs_env)
2817 : END DO
2818 : END IF
2819 :
2820 11299 : DEALLOCATE (zcharge)
2821 :
2822 11299 : CALL timestop(handle)
2823 :
2824 45196 : END SUBROUTINE write_mo_free_results
2825 :
2826 : ! **************************************************************************************************
2827 : !> \brief Calculates Hirshfeld charges
2828 : !> \param qs_env the qs_env where to calculate the charges
2829 : !> \param input_section the input section for Hirshfeld charges
2830 : !> \param unit_nr the output unit number
2831 : ! **************************************************************************************************
2832 4790 : SUBROUTINE hirshfeld_charges(qs_env, input_section, unit_nr)
2833 : TYPE(qs_environment_type), POINTER :: qs_env
2834 : TYPE(section_vals_type), POINTER :: input_section
2835 : INTEGER, INTENT(IN) :: unit_nr
2836 :
2837 : INTEGER :: i, iat, ikind, natom, nkind, nspin, &
2838 : radius_type, refc, shapef
2839 4790 : INTEGER, DIMENSION(:), POINTER :: atom_list
2840 : LOGICAL :: do_radius, do_sc, paw_atom
2841 : REAL(KIND=dp) :: zeff
2842 4790 : REAL(KIND=dp), DIMENSION(:), POINTER :: radii
2843 4790 : REAL(KIND=dp), DIMENSION(:, :), POINTER :: charges
2844 4790 : TYPE(atomic_kind_type), DIMENSION(:), POINTER :: atomic_kind_set
2845 : TYPE(atomic_kind_type), POINTER :: atomic_kind
2846 4790 : TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER :: matrix_p, matrix_s
2847 : TYPE(dft_control_type), POINTER :: dft_control
2848 : TYPE(hirshfeld_type), POINTER :: hirshfeld_env
2849 : TYPE(mp_para_env_type), POINTER :: para_env
2850 4790 : TYPE(mpole_rho_atom), DIMENSION(:), POINTER :: mp_rho
2851 4790 : TYPE(particle_type), DIMENSION(:), POINTER :: particle_set
2852 4790 : TYPE(qs_kind_type), DIMENSION(:), POINTER :: qs_kind_set
2853 : TYPE(qs_rho_type), POINTER :: rho
2854 : TYPE(rho0_mpole_type), POINTER :: rho0_mpole
2855 :
2856 4790 : NULLIFY (hirshfeld_env)
2857 4790 : NULLIFY (radii)
2858 4790 : CALL create_hirshfeld_type(hirshfeld_env)
2859 : !
2860 4790 : CALL get_qs_env(qs_env, nkind=nkind, natom=natom)
2861 14370 : ALLOCATE (hirshfeld_env%charges(natom))
2862 : ! input options
2863 4790 : CALL section_vals_val_get(input_section, "SELF_CONSISTENT", l_val=do_sc)
2864 4790 : CALL section_vals_val_get(input_section, "USER_RADIUS", l_val=do_radius)
2865 4790 : CALL section_vals_val_get(input_section, "SHAPE_FUNCTION", i_val=shapef)
2866 4790 : CALL section_vals_val_get(input_section, "REFERENCE_CHARGE", i_val=refc)
2867 4790 : IF (do_radius) THEN
2868 0 : radius_type = radius_user
2869 0 : CALL section_vals_val_get(input_section, "ATOMIC_RADII", r_vals=radii)
2870 0 : IF (.NOT. SIZE(radii) == nkind) &
2871 : CALL cp_abort(__LOCATION__, &
2872 : "Length of keyword HIRSHFELD\ATOMIC_RADII does not "// &
2873 0 : "match number of atomic kinds in the input coordinate file.")
2874 : ELSE
2875 4790 : radius_type = radius_covalent
2876 : END IF
2877 : CALL set_hirshfeld_info(hirshfeld_env, shape_function_type=shapef, &
2878 : iterative=do_sc, ref_charge=refc, &
2879 4790 : radius_type=radius_type)
2880 : ! shape function
2881 4790 : CALL get_qs_env(qs_env, qs_kind_set=qs_kind_set, atomic_kind_set=atomic_kind_set)
2882 : CALL create_shape_function(hirshfeld_env, qs_kind_set, atomic_kind_set, &
2883 4790 : radii_list=radii)
2884 : ! reference charges
2885 4790 : CALL get_qs_env(qs_env, rho=rho)
2886 4790 : CALL qs_rho_get(rho, rho_ao_kp=matrix_p)
2887 4790 : nspin = SIZE(matrix_p, 1)
2888 19160 : ALLOCATE (charges(natom, nspin))
2889 4778 : SELECT CASE (refc)
2890 : CASE (ref_charge_atomic)
2891 13086 : DO ikind = 1, nkind
2892 8308 : CALL get_qs_kind(qs_kind_set(ikind), zeff=zeff)
2893 8308 : atomic_kind => atomic_kind_set(ikind)
2894 8308 : CALL get_atomic_kind(atomic_kind, atom_list=atom_list)
2895 41380 : DO iat = 1, SIZE(atom_list)
2896 19986 : i = atom_list(iat)
2897 28294 : hirshfeld_env%charges(i) = zeff
2898 : END DO
2899 : END DO
2900 : CASE (ref_charge_mulliken)
2901 12 : CALL get_qs_env(qs_env, matrix_s_kp=matrix_s, para_env=para_env)
2902 12 : CALL mulliken_charges(matrix_p, matrix_s, para_env, charges)
2903 48 : DO iat = 1, natom
2904 108 : hirshfeld_env%charges(iat) = SUM(charges(iat, :))
2905 : END DO
2906 : CASE DEFAULT
2907 4790 : CPABORT("Unknown type of reference charge for Hirshfeld partitioning.")
2908 : END SELECT
2909 : !
2910 33314 : charges = 0.0_dp
2911 4790 : IF (hirshfeld_env%iterative) THEN
2912 : ! Hirshfeld-I charges
2913 22 : CALL comp_hirshfeld_i_charges(qs_env, hirshfeld_env, charges, unit_nr)
2914 : ELSE
2915 : ! Hirshfeld charges
2916 4768 : CALL comp_hirshfeld_charges(qs_env, hirshfeld_env, charges)
2917 : END IF
2918 4790 : CALL get_qs_env(qs_env, particle_set=particle_set, dft_control=dft_control)
2919 4790 : IF (dft_control%qs_control%gapw) THEN
2920 : ! GAPW: add core charges (rho_hard - rho_soft)
2921 698 : CALL get_qs_env(qs_env, rho0_mpole=rho0_mpole)
2922 698 : CALL get_rho0_mpole(rho0_mpole, mp_rho=mp_rho)
2923 3088 : DO iat = 1, natom
2924 2390 : atomic_kind => particle_set(iat)%atomic_kind
2925 2390 : CALL get_atomic_kind(atomic_kind, kind_number=ikind)
2926 2390 : CALL get_qs_kind(qs_kind_set(ikind), paw_atom=paw_atom)
2927 3088 : IF (paw_atom) THEN
2928 4574 : charges(iat, 1:nspin) = charges(iat, 1:nspin) + mp_rho(iat)%q0(1:nspin)
2929 : END IF
2930 : END DO
2931 : END IF
2932 : !
2933 4790 : IF (unit_nr > 0) THEN
2934 : CALL write_hirshfeld_charges(charges, hirshfeld_env, particle_set, &
2935 2409 : qs_kind_set, unit_nr)
2936 : END IF
2937 : ! Save the charges to the results under the tag [HIRSHFELD-CHARGES]
2938 4790 : CALL save_hirshfeld_charges(charges, particle_set, qs_kind_set, qs_env)
2939 : !
2940 4790 : CALL release_hirshfeld_type(hirshfeld_env)
2941 4790 : DEALLOCATE (charges)
2942 :
2943 9580 : END SUBROUTINE hirshfeld_charges
2944 :
2945 : ! **************************************************************************************************
2946 : !> \brief ...
2947 : !> \param ca ...
2948 : !> \param a ...
2949 : !> \param cb ...
2950 : !> \param b ...
2951 : !> \param l ...
2952 : ! **************************************************************************************************
2953 4 : SUBROUTINE project_function_a(ca, a, cb, b, l)
2954 : ! project function cb on ca
2955 : REAL(KIND=dp), DIMENSION(:), INTENT(OUT) :: ca
2956 : REAL(KIND=dp), DIMENSION(:), INTENT(IN) :: a, cb, b
2957 : INTEGER, INTENT(IN) :: l
2958 :
2959 : INTEGER :: info, n
2960 4 : INTEGER, ALLOCATABLE, DIMENSION(:) :: ipiv
2961 4 : REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :) :: smat, tmat, v
2962 :
2963 4 : n = SIZE(ca)
2964 40 : ALLOCATE (smat(n, n), tmat(n, n), v(n, 1), ipiv(n))
2965 :
2966 4 : CALL sg_overlap(smat, l, a, a)
2967 4 : CALL sg_overlap(tmat, l, a, b)
2968 1252 : v(:, 1) = MATMUL(tmat, cb)
2969 4 : CALL dgesv(n, 1, smat, n, ipiv, v, n, info)
2970 4 : CPASSERT(info == 0)
2971 52 : ca(:) = v(:, 1)
2972 :
2973 4 : DEALLOCATE (smat, tmat, v, ipiv)
2974 :
2975 4 : END SUBROUTINE project_function_a
2976 :
2977 : ! **************************************************************************************************
2978 : !> \brief ...
2979 : !> \param ca ...
2980 : !> \param a ...
2981 : !> \param bfun ...
2982 : !> \param grid_atom ...
2983 : !> \param l ...
2984 : ! **************************************************************************************************
2985 36 : SUBROUTINE project_function_b(ca, a, bfun, grid_atom, l)
2986 : ! project function f on ca
2987 : REAL(KIND=dp), DIMENSION(:), INTENT(OUT) :: ca
2988 : REAL(KIND=dp), DIMENSION(:), INTENT(IN) :: a, bfun
2989 : TYPE(grid_atom_type), POINTER :: grid_atom
2990 : INTEGER, INTENT(IN) :: l
2991 :
2992 : INTEGER :: i, info, n, nr
2993 36 : INTEGER, ALLOCATABLE, DIMENSION(:) :: ipiv
2994 36 : REAL(KIND=dp), ALLOCATABLE, DIMENSION(:) :: afun
2995 36 : REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :) :: smat, v
2996 :
2997 36 : n = SIZE(ca)
2998 36 : nr = grid_atom%nr
2999 360 : ALLOCATE (smat(n, n), v(n, 1), ipiv(n), afun(nr))
3000 :
3001 36 : CALL sg_overlap(smat, l, a, a)
3002 468 : DO i = 1, n
3003 22032 : afun(:) = grid_atom%rad(:)**l*EXP(-a(i)*grid_atom%rad2(:))
3004 22068 : v(i, 1) = SUM(afun(:)*bfun(:)*grid_atom%wr(:))
3005 : END DO
3006 36 : CALL dgesv(n, 1, smat, n, ipiv, v, n, info)
3007 36 : CPASSERT(info == 0)
3008 468 : ca(:) = v(:, 1)
3009 :
3010 36 : DEALLOCATE (smat, v, ipiv, afun)
3011 :
3012 36 : END SUBROUTINE project_function_b
3013 :
3014 : ! **************************************************************************************************
3015 : !> \brief Performs printing of cube files from local energy
3016 : !> \param input input
3017 : !> \param logger the logger
3018 : !> \param qs_env the qs_env in which the qs_env lives
3019 : !> \par History
3020 : !> 07.2019 created
3021 : !> \author JGH
3022 : ! **************************************************************************************************
3023 11299 : SUBROUTINE qs_scf_post_local_energy(input, logger, qs_env)
3024 : TYPE(section_vals_type), POINTER :: input
3025 : TYPE(cp_logger_type), POINTER :: logger
3026 : TYPE(qs_environment_type), POINTER :: qs_env
3027 :
3028 : CHARACTER(len=*), PARAMETER :: routineN = 'qs_scf_post_local_energy'
3029 :
3030 : CHARACTER(LEN=default_path_length) :: filename, my_pos_cube
3031 : INTEGER :: handle, io_unit, natom, unit_nr
3032 : LOGICAL :: append_cube, gapw, gapw_xc, mpi_io
3033 : TYPE(dft_control_type), POINTER :: dft_control
3034 : TYPE(particle_list_type), POINTER :: particles
3035 : TYPE(pw_env_type), POINTER :: pw_env
3036 : TYPE(pw_pool_type), POINTER :: auxbas_pw_pool
3037 : TYPE(pw_r3d_rs_type) :: eden
3038 : TYPE(qs_subsys_type), POINTER :: subsys
3039 : TYPE(section_vals_type), POINTER :: dft_section
3040 :
3041 11299 : CALL timeset(routineN, handle)
3042 11299 : io_unit = cp_logger_get_default_io_unit(logger)
3043 11299 : IF (BTEST(cp_print_key_should_output(logger%iter_info, input, &
3044 : "DFT%PRINT%LOCAL_ENERGY_CUBE"), cp_p_file)) THEN
3045 32 : dft_section => section_vals_get_subs_vals(input, "DFT")
3046 32 : CALL get_qs_env(qs_env=qs_env, dft_control=dft_control, natom=natom)
3047 32 : gapw = dft_control%qs_control%gapw
3048 32 : gapw_xc = dft_control%qs_control%gapw_xc
3049 32 : CALL get_qs_env(qs_env=qs_env, pw_env=pw_env, subsys=subsys)
3050 32 : CALL qs_subsys_get(subsys, particles=particles)
3051 32 : CALL pw_env_get(pw_env, auxbas_pw_pool=auxbas_pw_pool)
3052 32 : CALL auxbas_pw_pool%create_pw(eden)
3053 : !
3054 32 : CALL qs_local_energy(qs_env, eden)
3055 : !
3056 32 : append_cube = section_get_lval(input, "DFT%PRINT%LOCAL_ENERGY_CUBE%APPEND")
3057 32 : IF (append_cube) THEN
3058 0 : my_pos_cube = "APPEND"
3059 : ELSE
3060 32 : my_pos_cube = "REWIND"
3061 : END IF
3062 32 : mpi_io = .TRUE.
3063 : unit_nr = cp_print_key_unit_nr(logger, input, "DFT%PRINT%LOCAL_ENERGY_CUBE", &
3064 : extension=".cube", middle_name="local_energy", &
3065 32 : file_position=my_pos_cube, mpi_io=mpi_io)
3066 : CALL cp_pw_to_cube(eden, &
3067 : unit_nr, "LOCAL ENERGY", particles=particles, &
3068 : stride=section_get_ivals(dft_section, &
3069 32 : "PRINT%LOCAL_ENERGY_CUBE%STRIDE"), mpi_io=mpi_io)
3070 32 : IF (io_unit > 0) THEN
3071 16 : INQUIRE (UNIT=unit_nr, NAME=filename)
3072 16 : IF (gapw .OR. gapw_xc) THEN
3073 : WRITE (UNIT=io_unit, FMT="(/,T3,A,A)") &
3074 0 : "The soft part of the local energy is written to the file: ", TRIM(ADJUSTL(filename))
3075 : ELSE
3076 : WRITE (UNIT=io_unit, FMT="(/,T3,A,A)") &
3077 16 : "The local energy is written to the file: ", TRIM(ADJUSTL(filename))
3078 : END IF
3079 : END IF
3080 : CALL cp_print_key_finished_output(unit_nr, logger, input, &
3081 32 : "DFT%PRINT%LOCAL_ENERGY_CUBE", mpi_io=mpi_io)
3082 : !
3083 32 : CALL auxbas_pw_pool%give_back_pw(eden)
3084 : END IF
3085 11299 : CALL timestop(handle)
3086 :
3087 11299 : END SUBROUTINE qs_scf_post_local_energy
3088 :
3089 : ! **************************************************************************************************
3090 : !> \brief Performs printing of cube files from local energy
3091 : !> \param input input
3092 : !> \param logger the logger
3093 : !> \param qs_env the qs_env in which the qs_env lives
3094 : !> \par History
3095 : !> 07.2019 created
3096 : !> \author JGH
3097 : ! **************************************************************************************************
3098 11299 : SUBROUTINE qs_scf_post_local_stress(input, logger, qs_env)
3099 : TYPE(section_vals_type), POINTER :: input
3100 : TYPE(cp_logger_type), POINTER :: logger
3101 : TYPE(qs_environment_type), POINTER :: qs_env
3102 :
3103 : CHARACTER(len=*), PARAMETER :: routineN = 'qs_scf_post_local_stress'
3104 :
3105 : CHARACTER(LEN=default_path_length) :: filename, my_pos_cube
3106 : INTEGER :: handle, io_unit, natom, unit_nr
3107 : LOGICAL :: append_cube, gapw, gapw_xc, mpi_io
3108 : REAL(KIND=dp) :: beta
3109 : TYPE(dft_control_type), POINTER :: dft_control
3110 : TYPE(particle_list_type), POINTER :: particles
3111 : TYPE(pw_env_type), POINTER :: pw_env
3112 : TYPE(pw_pool_type), POINTER :: auxbas_pw_pool
3113 : TYPE(pw_r3d_rs_type) :: stress
3114 : TYPE(qs_subsys_type), POINTER :: subsys
3115 : TYPE(section_vals_type), POINTER :: dft_section
3116 :
3117 11299 : CALL timeset(routineN, handle)
3118 11299 : io_unit = cp_logger_get_default_io_unit(logger)
3119 11299 : IF (BTEST(cp_print_key_should_output(logger%iter_info, input, &
3120 : "DFT%PRINT%LOCAL_STRESS_CUBE"), cp_p_file)) THEN
3121 30 : dft_section => section_vals_get_subs_vals(input, "DFT")
3122 30 : CALL get_qs_env(qs_env=qs_env, dft_control=dft_control, natom=natom)
3123 30 : gapw = dft_control%qs_control%gapw
3124 30 : gapw_xc = dft_control%qs_control%gapw_xc
3125 30 : CALL get_qs_env(qs_env=qs_env, pw_env=pw_env, subsys=subsys)
3126 30 : CALL qs_subsys_get(subsys, particles=particles)
3127 30 : CALL pw_env_get(pw_env, auxbas_pw_pool=auxbas_pw_pool)
3128 30 : CALL auxbas_pw_pool%create_pw(stress)
3129 : !
3130 : ! use beta=0: kinetic energy density in symmetric form
3131 30 : beta = 0.0_dp
3132 30 : CALL qs_local_stress(qs_env, beta=beta)
3133 : !
3134 30 : append_cube = section_get_lval(input, "DFT%PRINT%LOCAL_STRESS_CUBE%APPEND")
3135 30 : IF (append_cube) THEN
3136 0 : my_pos_cube = "APPEND"
3137 : ELSE
3138 30 : my_pos_cube = "REWIND"
3139 : END IF
3140 30 : mpi_io = .TRUE.
3141 : unit_nr = cp_print_key_unit_nr(logger, input, "DFT%PRINT%LOCAL_STRESS_CUBE", &
3142 : extension=".cube", middle_name="local_stress", &
3143 30 : file_position=my_pos_cube, mpi_io=mpi_io)
3144 : CALL cp_pw_to_cube(stress, &
3145 : unit_nr, "LOCAL STRESS", particles=particles, &
3146 : stride=section_get_ivals(dft_section, &
3147 30 : "PRINT%LOCAL_STRESS_CUBE%STRIDE"), mpi_io=mpi_io)
3148 30 : IF (io_unit > 0) THEN
3149 15 : INQUIRE (UNIT=unit_nr, NAME=filename)
3150 15 : WRITE (UNIT=io_unit, FMT="(/,T3,A)") "Write 1/3*Tr(sigma) to cube file"
3151 15 : IF (gapw .OR. gapw_xc) THEN
3152 : WRITE (UNIT=io_unit, FMT="(T3,A,A)") &
3153 0 : "The soft part of the local stress is written to the file: ", TRIM(ADJUSTL(filename))
3154 : ELSE
3155 : WRITE (UNIT=io_unit, FMT="(T3,A,A)") &
3156 15 : "The local stress is written to the file: ", TRIM(ADJUSTL(filename))
3157 : END IF
3158 : END IF
3159 : CALL cp_print_key_finished_output(unit_nr, logger, input, &
3160 30 : "DFT%PRINT%LOCAL_STRESS_CUBE", mpi_io=mpi_io)
3161 : !
3162 30 : CALL auxbas_pw_pool%give_back_pw(stress)
3163 : END IF
3164 :
3165 11299 : CALL timestop(handle)
3166 :
3167 11299 : END SUBROUTINE qs_scf_post_local_stress
3168 :
3169 : ! **************************************************************************************************
3170 : !> \brief Performs printing of cube files related to the implicit Poisson solver
3171 : !> \param input input
3172 : !> \param logger the logger
3173 : !> \param qs_env the qs_env in which the qs_env lives
3174 : !> \par History
3175 : !> 03.2016 refactored from write_mo_free_results [Hossein Bani-Hashemian]
3176 : !> \author Mohammad Hossein Bani-Hashemian
3177 : ! **************************************************************************************************
3178 11299 : SUBROUTINE qs_scf_post_ps_implicit(input, logger, qs_env)
3179 : TYPE(section_vals_type), POINTER :: input
3180 : TYPE(cp_logger_type), POINTER :: logger
3181 : TYPE(qs_environment_type), POINTER :: qs_env
3182 :
3183 : CHARACTER(len=*), PARAMETER :: routineN = 'qs_scf_post_ps_implicit'
3184 :
3185 : CHARACTER(LEN=default_path_length) :: filename, my_pos_cube
3186 : INTEGER :: boundary_condition, handle, i, j, &
3187 : n_cstr, n_tiles, unit_nr
3188 : LOGICAL :: append_cube, do_cstr_charge_cube, do_dielectric_cube, do_dirichlet_bc_cube, &
3189 : has_dirichlet_bc, has_implicit_ps, mpi_io, tile_cubes
3190 : TYPE(particle_list_type), POINTER :: particles
3191 : TYPE(pw_env_type), POINTER :: pw_env
3192 : TYPE(pw_poisson_type), POINTER :: poisson_env
3193 : TYPE(pw_pool_type), POINTER :: auxbas_pw_pool
3194 : TYPE(pw_r3d_rs_type) :: aux_r
3195 : TYPE(pw_r3d_rs_type), POINTER :: dirichlet_tile
3196 : TYPE(qs_subsys_type), POINTER :: subsys
3197 : TYPE(section_vals_type), POINTER :: dft_section
3198 :
3199 11299 : CALL timeset(routineN, handle)
3200 :
3201 11299 : NULLIFY (pw_env, auxbas_pw_pool, dft_section, particles)
3202 :
3203 11299 : dft_section => section_vals_get_subs_vals(input, "DFT")
3204 11299 : CALL get_qs_env(qs_env=qs_env, pw_env=pw_env, subsys=subsys)
3205 11299 : CALL qs_subsys_get(subsys, particles=particles)
3206 11299 : CALL pw_env_get(pw_env, auxbas_pw_pool=auxbas_pw_pool)
3207 :
3208 11299 : has_implicit_ps = .FALSE.
3209 11299 : CALL get_qs_env(qs_env=qs_env, pw_env=pw_env)
3210 11299 : IF (pw_env%poisson_env%parameters%solver == pw_poisson_implicit) has_implicit_ps = .TRUE.
3211 :
3212 : ! Write the dielectric constant into a cube file
3213 : do_dielectric_cube = BTEST(cp_print_key_should_output(logger%iter_info, input, &
3214 11299 : "DFT%PRINT%IMPLICIT_PSOLVER%DIELECTRIC_CUBE"), cp_p_file)
3215 11299 : IF (has_implicit_ps .AND. do_dielectric_cube) THEN
3216 0 : append_cube = section_get_lval(input, "DFT%PRINT%IMPLICIT_PSOLVER%DIELECTRIC_CUBE%APPEND")
3217 0 : my_pos_cube = "REWIND"
3218 0 : IF (append_cube) THEN
3219 0 : my_pos_cube = "APPEND"
3220 : END IF
3221 0 : mpi_io = .TRUE.
3222 : unit_nr = cp_print_key_unit_nr(logger, input, "DFT%PRINT%IMPLICIT_PSOLVER%DIELECTRIC_CUBE", &
3223 : extension=".cube", middle_name="DIELECTRIC_CONSTANT", file_position=my_pos_cube, &
3224 0 : mpi_io=mpi_io)
3225 0 : CALL pw_env_get(pw_env, poisson_env=poisson_env, auxbas_pw_pool=auxbas_pw_pool)
3226 0 : CALL auxbas_pw_pool%create_pw(aux_r)
3227 :
3228 0 : boundary_condition = pw_env%poisson_env%parameters%ps_implicit_params%boundary_condition
3229 0 : SELECT CASE (boundary_condition)
3230 : CASE (PERIODIC_BC, MIXED_PERIODIC_BC)
3231 0 : CALL pw_copy(poisson_env%implicit_env%dielectric%eps, aux_r)
3232 : CASE (MIXED_BC, NEUMANN_BC)
3233 : CALL pw_shrink(pw_env%poisson_env%parameters%ps_implicit_params%neumann_directions, &
3234 : pw_env%poisson_env%implicit_env%dct_env%dests_shrink, &
3235 : pw_env%poisson_env%implicit_env%dct_env%srcs_shrink, &
3236 : pw_env%poisson_env%implicit_env%dct_env%bounds_local_shftd, &
3237 0 : poisson_env%implicit_env%dielectric%eps, aux_r)
3238 : END SELECT
3239 :
3240 : CALL cp_pw_to_cube(aux_r, unit_nr, "DIELECTRIC CONSTANT", particles=particles, &
3241 : stride=section_get_ivals(dft_section, "PRINT%IMPLICIT_PSOLVER%DIELECTRIC_CUBE%STRIDE"), &
3242 0 : mpi_io=mpi_io)
3243 : CALL cp_print_key_finished_output(unit_nr, logger, input, &
3244 0 : "DFT%PRINT%IMPLICIT_PSOLVER%DIELECTRIC_CUBE", mpi_io=mpi_io)
3245 :
3246 0 : CALL auxbas_pw_pool%give_back_pw(aux_r)
3247 : END IF
3248 :
3249 : ! Write Dirichlet constraint charges into a cube file
3250 : do_cstr_charge_cube = BTEST(cp_print_key_should_output(logger%iter_info, input, &
3251 11299 : "DFT%PRINT%IMPLICIT_PSOLVER%DIRICHLET_CSTR_CHARGE_CUBE"), cp_p_file)
3252 :
3253 11299 : has_dirichlet_bc = .FALSE.
3254 11299 : IF (has_implicit_ps) THEN
3255 86 : boundary_condition = pw_env%poisson_env%parameters%ps_implicit_params%boundary_condition
3256 86 : IF (boundary_condition == MIXED_PERIODIC_BC .OR. boundary_condition == MIXED_BC) THEN
3257 60 : has_dirichlet_bc = .TRUE.
3258 : END IF
3259 : END IF
3260 :
3261 11299 : IF (has_implicit_ps .AND. do_cstr_charge_cube .AND. has_dirichlet_bc) THEN
3262 : append_cube = section_get_lval(input, &
3263 0 : "DFT%PRINT%IMPLICIT_PSOLVER%DIRICHLET_CSTR_CHARGE_CUBE%APPEND")
3264 0 : my_pos_cube = "REWIND"
3265 0 : IF (append_cube) THEN
3266 0 : my_pos_cube = "APPEND"
3267 : END IF
3268 0 : mpi_io = .TRUE.
3269 : unit_nr = cp_print_key_unit_nr(logger, input, &
3270 : "DFT%PRINT%IMPLICIT_PSOLVER%DIRICHLET_CSTR_CHARGE_CUBE", &
3271 : extension=".cube", middle_name="dirichlet_cstr_charge", file_position=my_pos_cube, &
3272 0 : mpi_io=mpi_io)
3273 0 : CALL pw_env_get(pw_env, poisson_env=poisson_env, auxbas_pw_pool=auxbas_pw_pool)
3274 0 : CALL auxbas_pw_pool%create_pw(aux_r)
3275 :
3276 0 : boundary_condition = pw_env%poisson_env%parameters%ps_implicit_params%boundary_condition
3277 0 : SELECT CASE (boundary_condition)
3278 : CASE (MIXED_PERIODIC_BC)
3279 0 : CALL pw_copy(poisson_env%implicit_env%cstr_charge, aux_r)
3280 : CASE (MIXED_BC)
3281 : CALL pw_shrink(pw_env%poisson_env%parameters%ps_implicit_params%neumann_directions, &
3282 : pw_env%poisson_env%implicit_env%dct_env%dests_shrink, &
3283 : pw_env%poisson_env%implicit_env%dct_env%srcs_shrink, &
3284 : pw_env%poisson_env%implicit_env%dct_env%bounds_local_shftd, &
3285 0 : poisson_env%implicit_env%cstr_charge, aux_r)
3286 : END SELECT
3287 :
3288 : CALL cp_pw_to_cube(aux_r, unit_nr, "DIRICHLET CONSTRAINT CHARGE", particles=particles, &
3289 : stride=section_get_ivals(dft_section, "PRINT%IMPLICIT_PSOLVER%DIRICHLET_CSTR_CHARGE_CUBE%STRIDE"), &
3290 0 : mpi_io=mpi_io)
3291 : CALL cp_print_key_finished_output(unit_nr, logger, input, &
3292 0 : "DFT%PRINT%IMPLICIT_PSOLVER%DIRICHLET_CSTR_CHARGE_CUBE", mpi_io=mpi_io)
3293 :
3294 0 : CALL auxbas_pw_pool%give_back_pw(aux_r)
3295 : END IF
3296 :
3297 : ! Write Dirichlet type constranits into cube files
3298 : do_dirichlet_bc_cube = BTEST(cp_print_key_should_output(logger%iter_info, input, &
3299 11299 : "DFT%PRINT%IMPLICIT_PSOLVER%DIRICHLET_BC_CUBE"), cp_p_file)
3300 11299 : has_dirichlet_bc = .FALSE.
3301 11299 : IF (has_implicit_ps) THEN
3302 86 : boundary_condition = pw_env%poisson_env%parameters%ps_implicit_params%boundary_condition
3303 86 : IF (boundary_condition == MIXED_PERIODIC_BC .OR. boundary_condition == MIXED_BC) THEN
3304 60 : has_dirichlet_bc = .TRUE.
3305 : END IF
3306 : END IF
3307 :
3308 11299 : IF (has_implicit_ps .AND. has_dirichlet_bc .AND. do_dirichlet_bc_cube) THEN
3309 0 : append_cube = section_get_lval(input, "DFT%PRINT%IMPLICIT_PSOLVER%DIRICHLET_BC_CUBE%APPEND")
3310 0 : my_pos_cube = "REWIND"
3311 0 : IF (append_cube) THEN
3312 0 : my_pos_cube = "APPEND"
3313 : END IF
3314 0 : tile_cubes = section_get_lval(input, "DFT%PRINT%IMPLICIT_PSOLVER%DIRICHLET_BC_CUBE%TILE_CUBES")
3315 :
3316 0 : CALL pw_env_get(pw_env, poisson_env=poisson_env, auxbas_pw_pool=auxbas_pw_pool)
3317 0 : CALL auxbas_pw_pool%create_pw(aux_r)
3318 0 : CALL pw_zero(aux_r)
3319 :
3320 0 : IF (tile_cubes) THEN
3321 : ! one cube file per tile
3322 0 : n_cstr = SIZE(poisson_env%implicit_env%contacts)
3323 0 : DO j = 1, n_cstr
3324 0 : n_tiles = poisson_env%implicit_env%contacts(j)%dirichlet_bc%n_tiles
3325 0 : DO i = 1, n_tiles
3326 : filename = "dirichlet_cstr_"//TRIM(ADJUSTL(cp_to_string(j)))// &
3327 0 : "_tile_"//TRIM(ADJUSTL(cp_to_string(i)))
3328 0 : mpi_io = .TRUE.
3329 : unit_nr = cp_print_key_unit_nr(logger, input, "DFT%PRINT%IMPLICIT_PSOLVER%DIRICHLET_BC_CUBE", &
3330 : extension=".cube", middle_name=filename, file_position=my_pos_cube, &
3331 0 : mpi_io=mpi_io)
3332 :
3333 0 : CALL pw_copy(poisson_env%implicit_env%contacts(j)%dirichlet_bc%tiles(i)%tile%tile_pw, aux_r)
3334 :
3335 : CALL cp_pw_to_cube(aux_r, unit_nr, "DIRICHLET TYPE CONSTRAINT", particles=particles, &
3336 : stride=section_get_ivals(dft_section, "PRINT%IMPLICIT_PSOLVER%DIRICHLET_BC_CUBE%STRIDE"), &
3337 0 : mpi_io=mpi_io)
3338 : CALL cp_print_key_finished_output(unit_nr, logger, input, &
3339 0 : "DFT%PRINT%IMPLICIT_PSOLVER%DIRICHLET_BC_CUBE", mpi_io=mpi_io)
3340 : END DO
3341 : END DO
3342 : ELSE
3343 : ! a single cube file
3344 0 : NULLIFY (dirichlet_tile)
3345 0 : ALLOCATE (dirichlet_tile)
3346 0 : CALL auxbas_pw_pool%create_pw(dirichlet_tile)
3347 0 : CALL pw_zero(dirichlet_tile)
3348 0 : mpi_io = .TRUE.
3349 : unit_nr = cp_print_key_unit_nr(logger, input, "DFT%PRINT%IMPLICIT_PSOLVER%DIRICHLET_BC_CUBE", &
3350 : extension=".cube", middle_name="DIRICHLET_CSTR", file_position=my_pos_cube, &
3351 0 : mpi_io=mpi_io)
3352 :
3353 0 : n_cstr = SIZE(poisson_env%implicit_env%contacts)
3354 0 : DO j = 1, n_cstr
3355 0 : n_tiles = poisson_env%implicit_env%contacts(j)%dirichlet_bc%n_tiles
3356 0 : DO i = 1, n_tiles
3357 0 : CALL pw_copy(poisson_env%implicit_env%contacts(j)%dirichlet_bc%tiles(i)%tile%tile_pw, dirichlet_tile)
3358 0 : CALL pw_axpy(dirichlet_tile, aux_r)
3359 : END DO
3360 : END DO
3361 :
3362 : CALL cp_pw_to_cube(aux_r, unit_nr, "DIRICHLET TYPE CONSTRAINT", particles=particles, &
3363 : stride=section_get_ivals(dft_section, "PRINT%IMPLICIT_PSOLVER%DIRICHLET_BC_CUBE%STRIDE"), &
3364 0 : mpi_io=mpi_io)
3365 : CALL cp_print_key_finished_output(unit_nr, logger, input, &
3366 0 : "DFT%PRINT%IMPLICIT_PSOLVER%DIRICHLET_BC_CUBE", mpi_io=mpi_io)
3367 0 : CALL auxbas_pw_pool%give_back_pw(dirichlet_tile)
3368 0 : DEALLOCATE (dirichlet_tile)
3369 : END IF
3370 :
3371 0 : CALL auxbas_pw_pool%give_back_pw(aux_r)
3372 : END IF
3373 :
3374 11299 : CALL timestop(handle)
3375 :
3376 11299 : END SUBROUTINE qs_scf_post_ps_implicit
3377 :
3378 : !**************************************************************************************************
3379 : !> \brief write an adjacency (interaction) matrix
3380 : !> \param qs_env qs environment
3381 : !> \param input the input
3382 : !> \author Mohammad Hossein Bani-Hashemian
3383 : ! **************************************************************************************************
3384 11299 : SUBROUTINE write_adjacency_matrix(qs_env, input)
3385 : TYPE(qs_environment_type), POINTER :: qs_env
3386 : TYPE(section_vals_type), POINTER :: input
3387 :
3388 : CHARACTER(len=*), PARAMETER :: routineN = 'write_adjacency_matrix'
3389 :
3390 : INTEGER :: adjm_size, colind, handle, iatom, ikind, &
3391 : ind, jatom, jkind, k, natom, nkind, &
3392 : output_unit, rowind, unit_nr
3393 11299 : INTEGER, ALLOCATABLE, DIMENSION(:) :: interact_adjm
3394 : LOGICAL :: do_adjm_write, do_symmetric
3395 : TYPE(cp_logger_type), POINTER :: logger
3396 11299 : TYPE(gto_basis_set_p_type), DIMENSION(:), POINTER :: basis_set_list_a, basis_set_list_b
3397 : TYPE(gto_basis_set_type), POINTER :: basis_set_a, basis_set_b
3398 : TYPE(mp_para_env_type), POINTER :: para_env
3399 : TYPE(neighbor_list_iterator_p_type), &
3400 11299 : DIMENSION(:), POINTER :: nl_iterator
3401 : TYPE(neighbor_list_set_p_type), DIMENSION(:), &
3402 11299 : POINTER :: nl
3403 11299 : TYPE(qs_kind_type), DIMENSION(:), POINTER :: qs_kind_set
3404 : TYPE(section_vals_type), POINTER :: dft_section
3405 :
3406 11299 : CALL timeset(routineN, handle)
3407 :
3408 11299 : NULLIFY (dft_section)
3409 :
3410 11299 : logger => cp_get_default_logger()
3411 11299 : output_unit = cp_logger_get_default_io_unit(logger)
3412 :
3413 11299 : dft_section => section_vals_get_subs_vals(input, "DFT")
3414 : do_adjm_write = BTEST(cp_print_key_should_output(logger%iter_info, dft_section, &
3415 11299 : "PRINT%ADJMAT_WRITE"), cp_p_file)
3416 :
3417 11299 : IF (do_adjm_write) THEN
3418 28 : NULLIFY (qs_kind_set, nl_iterator)
3419 28 : NULLIFY (basis_set_list_a, basis_set_list_b, basis_set_a, basis_set_b)
3420 :
3421 28 : CALL get_qs_env(qs_env, qs_kind_set=qs_kind_set, sab_orb=nl, natom=natom, para_env=para_env)
3422 :
3423 28 : nkind = SIZE(qs_kind_set)
3424 28 : CPASSERT(SIZE(nl) > 0)
3425 28 : CALL get_neighbor_list_set_p(neighbor_list_sets=nl, symmetric=do_symmetric)
3426 28 : CPASSERT(do_symmetric)
3427 216 : ALLOCATE (basis_set_list_a(nkind), basis_set_list_b(nkind))
3428 28 : CALL basis_set_list_setup(basis_set_list_a, "ORB", qs_kind_set)
3429 28 : CALL basis_set_list_setup(basis_set_list_b, "ORB", qs_kind_set)
3430 :
3431 28 : adjm_size = ((natom + 1)*natom)/2
3432 84 : ALLOCATE (interact_adjm(4*adjm_size))
3433 620 : interact_adjm = 0
3434 :
3435 28 : NULLIFY (nl_iterator)
3436 28 : CALL neighbor_list_iterator_create(nl_iterator, nl)
3437 2021 : DO WHILE (neighbor_list_iterate(nl_iterator) == 0)
3438 : CALL get_iterator_info(nl_iterator, &
3439 : ikind=ikind, jkind=jkind, &
3440 1993 : iatom=iatom, jatom=jatom)
3441 :
3442 1993 : basis_set_a => basis_set_list_a(ikind)%gto_basis_set
3443 1993 : IF (.NOT. ASSOCIATED(basis_set_a)) CYCLE
3444 1993 : basis_set_b => basis_set_list_b(jkind)%gto_basis_set
3445 1993 : IF (.NOT. ASSOCIATED(basis_set_b)) CYCLE
3446 :
3447 : ! move everything to the upper triangular part
3448 1993 : IF (iatom <= jatom) THEN
3449 : rowind = iatom
3450 : colind = jatom
3451 : ELSE
3452 670 : rowind = jatom
3453 670 : colind = iatom
3454 : ! swap the kinds too
3455 : ikind = ikind + jkind
3456 670 : jkind = ikind - jkind
3457 670 : ikind = ikind - jkind
3458 : END IF
3459 :
3460 : ! indexing upper triangular matrix
3461 1993 : ind = adjm_size - (natom - rowind + 1)*((natom - rowind + 1) + 1)/2 + colind - rowind + 1
3462 : ! convert the upper triangular matrix into a adjm_size x 4 matrix
3463 : ! columns are: iatom, jatom, ikind, jkind
3464 1993 : interact_adjm((ind - 1)*4 + 1) = rowind
3465 1993 : interact_adjm((ind - 1)*4 + 2) = colind
3466 1993 : interact_adjm((ind - 1)*4 + 3) = ikind
3467 1993 : interact_adjm((ind - 1)*4 + 4) = jkind
3468 : END DO
3469 :
3470 28 : CALL para_env%sum(interact_adjm)
3471 :
3472 : unit_nr = cp_print_key_unit_nr(logger, dft_section, "PRINT%ADJMAT_WRITE", &
3473 : extension=".adjmat", file_form="FORMATTED", &
3474 28 : file_status="REPLACE")
3475 28 : IF (unit_nr > 0) THEN
3476 14 : WRITE (unit_nr, "(1A,2X,1A,5X,1A,4X,A5,3X,A5)") "#", "iatom", "jatom", "ikind", "jkind"
3477 88 : DO k = 1, 4*adjm_size, 4
3478 : ! print only the interacting atoms
3479 88 : IF (interact_adjm(k) > 0 .AND. interact_adjm(k + 1) > 0) THEN
3480 74 : WRITE (unit_nr, "(I8,2X,I8,3X,I6,2X,I6)") interact_adjm(k:k + 3)
3481 : END IF
3482 : END DO
3483 : END IF
3484 :
3485 28 : CALL cp_print_key_finished_output(unit_nr, logger, dft_section, "PRINT%ADJMAT_WRITE")
3486 :
3487 28 : CALL neighbor_list_iterator_release(nl_iterator)
3488 56 : DEALLOCATE (basis_set_list_a, basis_set_list_b)
3489 : END IF
3490 :
3491 11299 : CALL timestop(handle)
3492 :
3493 22598 : END SUBROUTINE write_adjacency_matrix
3494 :
3495 : ! **************************************************************************************************
3496 : !> \brief Updates Hartree potential with MP2 density. Important for REPEAT charges
3497 : !> \param rho ...
3498 : !> \param qs_env ...
3499 : !> \author Vladimir Rybkin
3500 : ! **************************************************************************************************
3501 322 : SUBROUTINE update_hartree_with_mp2(rho, qs_env)
3502 : TYPE(qs_rho_type), POINTER :: rho
3503 : TYPE(qs_environment_type), POINTER :: qs_env
3504 :
3505 : LOGICAL :: use_virial
3506 : TYPE(pw_c1d_gs_type) :: rho_tot_gspace, v_hartree_gspace
3507 : TYPE(pw_c1d_gs_type), POINTER :: rho_core
3508 : TYPE(pw_env_type), POINTER :: pw_env
3509 : TYPE(pw_poisson_type), POINTER :: poisson_env
3510 : TYPE(pw_pool_type), POINTER :: auxbas_pw_pool
3511 : TYPE(pw_r3d_rs_type), POINTER :: v_hartree_rspace
3512 : TYPE(qs_energy_type), POINTER :: energy
3513 : TYPE(virial_type), POINTER :: virial
3514 :
3515 322 : NULLIFY (auxbas_pw_pool, pw_env, poisson_env, energy, rho_core, v_hartree_rspace, virial)
3516 : CALL get_qs_env(qs_env, pw_env=pw_env, energy=energy, &
3517 : rho_core=rho_core, virial=virial, &
3518 322 : v_hartree_rspace=v_hartree_rspace)
3519 :
3520 322 : use_virial = virial%pv_availability .AND. (.NOT. virial%pv_numer)
3521 :
3522 : IF (.NOT. use_virial) THEN
3523 :
3524 : CALL pw_env_get(pw_env, auxbas_pw_pool=auxbas_pw_pool, &
3525 268 : poisson_env=poisson_env)
3526 268 : CALL auxbas_pw_pool%create_pw(v_hartree_gspace)
3527 268 : CALL auxbas_pw_pool%create_pw(rho_tot_gspace)
3528 :
3529 268 : CALL calc_rho_tot_gspace(rho_tot_gspace, qs_env, rho)
3530 : CALL pw_poisson_solve(poisson_env, rho_tot_gspace, energy%hartree, &
3531 268 : v_hartree_gspace, rho_core=rho_core)
3532 :
3533 268 : CALL pw_transfer(v_hartree_gspace, v_hartree_rspace)
3534 268 : CALL pw_scale(v_hartree_rspace, v_hartree_rspace%pw_grid%dvol)
3535 :
3536 268 : CALL auxbas_pw_pool%give_back_pw(v_hartree_gspace)
3537 268 : CALL auxbas_pw_pool%give_back_pw(rho_tot_gspace)
3538 : END IF
3539 :
3540 322 : END SUBROUTINE update_hartree_with_mp2
3541 :
3542 : END MODULE qs_scf_post_gpw
|